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Abstract 1	  

RECOVERY OF AN ALPINE BOMBUS COMMUNITY FOLLOWING DROUGHT-2	  
MEDIATED POPULATION CONTRACTIONS (AUGUST 2015) 3	  

 4	  
Leigh Rimmer 5	  

B.S., Appalachian State University 6	  
M.S., Appalachian State University 7	  

Chairperson: Jennifer C. Geib 8	  

Worldwide pollinator decline has increased the urgency of assessing native pollinator 9	  

abundance and genetic fitness of existing populations (Darvill et al. 2006, Ellis et al. 2006, 10	  

Goulson et al. 2008, 2015, Geib et al. 2015). In 2012, an extreme and persistent drought in 11	  

the intermountain western US caused severe population contractions within a Bombus 12	  

(Order: Hymenoptera, Family: Apidae) community at Pennsylvania Mountain Natural Area, 13	  

Park County, Colorado. There was a 99% decrease in overall forager abundance compared to 14	  

previous years, and no reproductives were seen during the sampling season. The severe 15	  

population contractions resulting from the drought served as a natural opportunity to 16	  

investigate how bumble bees can recover from catastrophic events. This study aimed to 1) 17	  

measure the post-drought recovery of the alpine Bombus community and 2) measure the 18	  

“effective population size” and search for evidence of a corresponding genetic bottleneck in a 19	  

historically dominant alpine bumble bee, Bombus balteatus.    20	  
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I conducted field samples to collect all Bombus foragers present at the peak of the late 21	  

flowering/foraging season in 2013. Samples were used conducted comparisons of 1) the 22	  

overall size of the Bombus community, 2) relative species abundances, 3) relative 23	  

abundances of ecologically relevant groupings of species (alpine vs. recently invading 24	  

subalpine Bombus and long vs. medium, and short-tongued bees), 4) mean tongue length of 25	  

the Bombus community, and 5) measures of species diversity or richness. Statistical analysis 26	  

of these measures revealed that the community is relatively unchanged from pre-drought 27	  

estimates. The 2013-year yielded the highest rate of forager capture, no change in overall 28	  

species or ecologically grouped species abundance, and no change in frequency of tongue 29	  

length or mean tongue length. Furthermore, 2013 had higher levels of species diversity and 30	  

richness than any other pre-drought year. These observations suggest that alpine bees may 31	  

have mechanisms to recovery quickly from severe population contractions and that there may 32	  

be nearby source populations responsible for replenishing the community. 33	  

The second goal of this study was to obtain information from genotypes from Bombus 34	  

balteatus individuals to 1) document size of breeding population (“effective population size,” 35	  

or Ne) and 2) identify any evidence of a genetic bottleneck after an observed population 36	  

bottleneck. PCR amplification of 9 microsatellite loci provided genotypic data for the 2013 37	  

population, and pre-drought genetic information from 2008 served as a comparison. 38	  

Estimates of Ne were made using COLONY 2.0 software by using genotypes to assign 39	  

sibships. Genotypes were also required to conduct three different bottleneck tests: the M-40	  

ratio, heterozygosity excess, and mode shift. Ne estimates did not differ significantly from 41	  

pre-drought estimates and were well above predicted levels. None of the bottleneck tests 42	  

revealed any evidence that a genetic bottleneck persisted in the 2013 Bombus balteatus 43	  
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population.  This outcome suggests that immigration and dispersal to high alpine 44	  

mountaintops rates are high, and that these mountaintops may be less isolated than previously 45	  

thought.  46	  



	  vii 

Acknowledgments	  47	  

	  48	  

I give infinite thanks to my advisor, Jennifer Geib, for all of her insight, patience, 49	  

generosity, and wisdom. I thank Dr. Estep for teaching me new techniques, the use of his 50	  

molecular lab at ASU, and for spending countless hours to help me troubleshoot my 51	  

experiments. I’d also like to thank Dr. Williams who first taught me entomology and has 52	  

provided invaluable insight in the creation of my thesis.  53	  

Without the help Jack Stoehr and Ashley Allison, this project may not have been 54	  

possible. Thank you for all your assistance and optimism in the field and the lab; you will 55	  

forever be some of my dearest friends. Many thanks to Eric Rayfield, Kimberly, and Mary 56	  

for help in the lab and field.  57	  

To my boyfriend James Montgomery, who shared this journey with me, thank you for 58	  

always believing in me and being my biggest fan. Brittany Wolff, thank you for being my 59	  

muse and friend through it all.  60	  

My wonderful and saintly parents, Donna and Malcolm Rimmer, are the source of all 61	  

my accomplishments and strength. Thank you for always having my back and never letting 62	  

me doubt myself.  63	  

Appalachian State University Office of Student Research and Cratis D. Williams 64	  

Graduate School provided funding for this research.   65	  



	  viii 

Table of Contents 66	  

 67	  

Abstract .............................................................................................................................. iv 68	  

Acknowledgments ............................................................................................................. vii 69	  

Chapter 1: General Introduction ..........................................................................................1 70	  

 Figure Legends .........................................................................................................7 71	  

 Figures......................................................................................................................8 72	  

Chapter 2 Recovery of an Alpine Bumble Bee Community Following Drought-Mediated 73	  

Population Contractions .......................................................................................................9 74	  

 Abstract ....................................................................................................................9 75	  

 Introduction ............................................................................................................10 76	  

 Methods..................................................................................................................14 77	  

 Results ....................................................................................................................20 78	  

 Discussion ..............................................................................................................21 79	  

 Tables .....................................................................................................................28 80	  

 Figure Legends .......................................................................................................31 81	  

 Figures....................................................................................................................34 82	  

Chapter 3: No Evidence of a Genetic Signature Following a Drought-Mediated Demographic 83	  

Bottleneck in an Alpine Bumble bee, Bombus balteatus ...................................................41 84	  

 Abstract ..................................................................................................................41 85	  

 Introduction ............................................................................................................4286	  



	  ix 

 Methods..................................................................................................................46 87	  

 Results ....................................................................................................................53 88	  

 Discussion ..............................................................................................................55 89	  

 Tables .....................................................................................................................62 90	  

 Figure Legends .......................................................................................................67 91	  

 Figures....................................................................................................................68 92	  

Chapter 4: General Conclusions ........................................................................................71 93	  

Compiled References  ........................................................................................................75 94	  

Appendix A:  Benefits to Host Plants ................................................................................90 95	  

 Methods..................................................................................................................91 96	  

 Results ....................................................................................................................94 97	  

 Discussion ..............................................................................................................95 98	  

 Tables .....................................................................................................................98 99	  

 Figure Legends .......................................................................................................99 100	  

 Figures..................................................................................................................100 101	  

Vita ...................................................................................................................................102  102	  



	  1 

Chapter 1 103	  

GENERAL INTRODUCTION 104	  

 105	  

Plant-pollinator mutualisms are important ecosystem relationships in angiosperm 106	  

communities (Allen-Wardell et al. 1998, Kearns et al. 1998, Ghazoul 2005), where both the 107	  

pollinator and the plant receive benefits to varying degrees (Stanton 2003). Pollinators 108	  

benefit by receiving nutrient rewards in the form of pollen or nectar, and plants benefit by 109	  

receiving aid in sexual reproduction via mechanical movement of their pollen to another 110	  

individual, or the receipt of pollen themselves (Lautenbach et al. 2012). Negative impacts on 111	  

these relationships are of particular concern because of evidence of worldwide declines in 112	  

pollinator abundance (Goulson et al. 2015) which may endanger pollinator-dependent plants 113	  

(Klein et al. 2003, Inouye 2008, Gong and Huang 2011).  114	  

While declines of managed honeybees have gained the most attention (Goulson et al. 115	  

2015), wild bees, including bumble bees, have been sparsely studied worldwide, although 116	  

monitoring efforts have intensified (e.g., pollinatorwatch.org and bumblebeewatch.org). 117	  

European bumble bees have experienced significant range declines, localized extirpation, and 118	  

four documented extinctions across the continent (Kosior et al. 2007, Goulson et al. 2008). 119	  

South American bees have faced invasions from North American bumble bees, which has 120	  

caused native pollinator species to decline in turn (Schmid-Hempel et al. 2014).  In North 121	  

America, two wide-spread and historically abundant bumble bees, Bombus terricola and B. 122	  

occidentalis have decreased severely since the 1990s (Williams et al. 2009). The Northern 123	  
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California bumble bee B. franklini has not been reported seen since 2006, and is thought to 124	  

be extinct. A recent study addressing native bumble bee declines in Illinois has found four 125	  

species extirpated from the region and substantial declines in overall bumble bee species 126	  

diversity (Grixti et al. 2009). Despite the limited amount of data currently available for just a 127	  

few species of North American bees, the predictions drawn from such research forecast a 128	  

troubling future for the many wild bumble bee populations that have not yet been surveyed.   129	  

Economically, pollinator decline can have huge implications for the agricultural 130	  

industry, as pollinators are estimated to contribute an estimated $14 billion dollars in services 131	  

to crops each year and are responsible for pollinating 75% of all food crops worldwide 132	  

(Goulson et al. 2015). Evidence linking pollinator decline and lowered species diversity to 133	  

diminished crop yields has already emerged (Grixti et al. 2009), as has relationships to loss 134	  

of pollinator species diversity (Klein et al. 2003). Not only will this breakdown of 135	  

mutualisms cause economic problems, but a lack of pollination services will reduce the 136	  

amount of available outcross pollen for plants, and diversity may suffer (Memmott et al. 137	  

2004). Smaller populations of bees will also have smaller pools of available genetic diversity, 138	  

which causes lowered genetic fitness for colonies and inhibit the ability for colonies to fight 139	  

off parasites and disease (Liersch and Schmid-hempel 1998, Gillespie 2010). 140	  

There are several identified causes of bumble bee decline. Habitat loss is responsible 141	  

for creating a cascade of problems for native pollinators including decreasing availability of 142	  

nest sites, restricting floral resources, and creating fragmented subpopulations that may 143	  

become isolated over time and restrict gene flow (Ellis et al. 2006). Competition from non-144	  

native bees, such as the introduction of Apis mellifera from Europe to North America, can 145	  

displace and outcompete native pollinators, especially when there are no parasites or diseases 146	  
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in the new region that can limit population sizes or rates of expansion (Goulson 2003, 147	  

Thomson 2004, Goulson et al. 2005). Parasites, whether native or transported from foreign 148	  

regions, are becoming a pressing concern for bumble bees. As commercial colony production 149	  

expands, prevalence of parasites such as Nosema bombi, N. ceranae, and Apicystis bombi can 150	  

infect individuals more readily and individuals mingling with wild bees can introduce the 151	  

parasites to non-managed colonies (Graystock et al. 2013). Pesticides, especially 152	  

neonicotinoids, are suspected in the decline of managed and wild bee populations within 153	  

industrial agriculture landscapes (Goulson et al. 2005).   154	  

Unfortunately, global climate change (especially higher temperatures and changes in 155	  

precipitation) may serve to exacerbate many of the problems pollinators are facing today 156	  

(Goulson et al. 2015). Changing environmental conditions can cause rapid changes in 157	  

community structure and composition and is expected to drive species range shifts upwards 158	  

in latitude and elevation. Some preliminary evidence already exists for species range shifts 159	  

caused by changing temperatures (Williams et al. 2009) and non-native competitive species 160	  

and invasive parasites may expand their range (Walther et al. 2002, Le Conte and Navajas 161	  

2008). Flower phenology may begin to mismatch with pollinator emergence, leading to 162	  

breakdowns in mutualisms (Parmesan 2006, Memmott et al. 2007, Inouye 2008, Goulson et 163	  

al. 2015).  164	  

Predictions for global climate change include a rise in average global temperature of 165	  

at least 2°F in the next decade (up to 11.5°F by 2100) (USGCRP 2009). Northern hemisphere 166	  

snow cover is expected to decrease by 15% by 2100, and snow accumulation will begin later 167	  

and melt earlier (National Research Council [NRC] 2011). Extreme weather events may 168	  

become more common, with higher winds, most intense precipitation events, and more 169	  
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frequent and prolonged droughts, especially in the American West (Harrison 2000, Rasmont 170	  

and Iserbyt 2012). 171	  

In the US, the Intermountain West has already experienced significant impacts from 172	  

climate change. The region has seen above average yearly temperature increases of 2.5°F and 173	  

in every season, daily minimum temperatures have warmed more than daily maximums 174	  

(Childress et al. 2015).  Since 2000, average snowpack measured by April 1st has declined 175	  

substantially, and is especially pronounced in the Southern Rocky Mountains below 45 176	  

degrees latitude. Furthermore, snowmelt and peak runoff has occurred an average of one to 177	  

four weeks ahead of usual, which may be contributing to the tendency of more frequent soil 178	  

moisture droughts also seen in the area (Childress et al. 2015).  179	  

Intermountain West predictions for mid-century forecast worsening conditions. 180	  

Temperatures are projected to increase by an average of 5.5°F, and the early melting of 181	  

winter snowpack is expected to advance the spring runoff date (when melting usually begins) 182	  

by one to three weeks. Winter precipitation is more likely to fall in the form of rain rather 183	  

than snow (McCabe and Wolock 2010), and snowpack is expected to dissipate as early as 184	  

April 1st. In concordance with worldwide predictions for climate change, this region will 185	  

experience an increase in number and duration of severe heat waves, drought, and wildfire 186	  

(Childress et al. 2015). It is currently unknown how pollinator populations and communities 187	  

will fare under extreme drought conditions. 188	  

My thesis research takes advantage of a natural opportunity to investigate 189	  

implications for pollinators from a particularly intense drought in the Western US in 2012. 190	  

The context of the study is a native alpine Bombus community situated in the Colorado 191	  

Rocky Mountains, at the Pennsylvania Mountain Natural Area (PMNA), Mosquito Range, 192	  
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Park County.  This community was the subject of considerable study in the late 1970s and 193	  

has been monitored semiannually since 2008.   194	  

During 2012, a severe drought struck midway though the water year (measured 195	  

October through September) and was classified as “extreme” drought by June of that year 196	  

(droughtmonitor.unl.edu).  The early spring months of March – May constituted the second 197	  

warmest spring in Colorado in the past 118 years and this early warming accelerated the 198	  

early melting of the already-low snowpack by 4-8 weeks ahead of average. This caused 199	  

excessive transpiration from soil and vegetation, and more importantly, the loss of the snow 200	  

responsible for insulating overwintering bumble bee queens (Lukas and Darby 2012). 201	  

Coinciding with extremely early flowering and senescence of the plant community in 2012 202	  

(average bloom time was 45% shorter than normal; Franklin 2014), significant reductions in 203	  

foraging bumble bee densities were observed compared to previous years (Fig. 1), and no 204	  

Bombus reproductives were observed at the end of the growing season.  The mountainous 205	  

terrain and potential geographic isolation of these populations, along with the Bombus life 206	  

history strategy of re-establishing populations each season from foundress queens of the 207	  

previous year predicted that carry-over effects would be observed in 2013.   208	  

Chapter two outlines my first study documenting the recovery of the Bombus 209	  

community by quantifying species composition and relative abundances of Bombus foragers 210	  

one generation following the drought-mediated population contractions. Foragers are 211	  

important to the floral community in that they provide direct pollination services and increase 212	  

plant fecundity for obligate outcrossing plants. Forager samples were also used to estimate 213	  

the average pollinator tongue lengths within the bumble bee community because pollinators 214	  

partition themselves among the community based on tongue length and corresponding flower 215	  



	  6 

corolla tube lengths (Stang et al. 2006). I compared the diversity and richness of species in 216	  

the years proceeding, during, and following the drought, and compared post-drought 217	  

measures to recent data to determine any summary changes resulting from the severe 218	  

population reductions during the drought year. 219	  

Chapter three focuses on effects of demographic contraction on population genetics 220	  

of one of two historically dominant alpine Bombus species, Bombus balteatus. Bombus 221	  

balteatus is the only long tongue bumble bee in the alpine tundra and is important for the 222	  

pollination of many alpine plant species; especially those that have long corolla length tubes. 223	  

Unfortunately, worldwide declines of pollinators are impacting long-tongue species 224	  

especially hard due to the loss of varied floral resources (Goulson et al. 2008).  I sampled 225	  

DNA from foraging workers and used molecular genetics techniques to examine effective 226	  

population sizes pre- and post-drought and test for any genetic consequences that would be 227	  

predicted following severe population reductions, such as loss of heterozygosity (bottleneck 228	  

effects), that could impact the health and future persistence of these populations.  229	  

This study aims to take advantage of this natural opportunity to observe how alpine 230	  

pollinators will be able recover from an extreme weather event that is expected to become 231	  

more common and prolonged in the future. It can provide insights into whether instantaneous 232	  

climactic events may work to facilitate shifts in relative abundances and diversity in 233	  

pollinator communities.  Molecular analyses should set the stage for future research into 234	  

landscapes factors that facilitate or resist gene flow among pollinator populations. 235	  
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Figure Legends 236	  

Figure 1: Capture rate of foraging worker bumble bees, as a proxy for absolute abundance, 237	  

during semi-annual surveys at Pennsylvania Mountain, Park County, CO. Columns represent 238	  

means of sites sampled each year (n = 4, 2, and 4 for 2008, 2011, and 2012, respectively). 239	  

Error bars are standard error. (Geib and Galen, unpublished data). 240	  
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Chapter 2 243	  

ABSTRACT 244	  

RECOVERY OF ALPINE BUMBLE BEE COMMUNITY FOLLOWING DROUGHT-245	  
MEDIATED POPULATION CONTRACTIONS 246	  

  247	  

As pollinator populations continue to decline worldwide, it is important to be able to estimate 248	  

how populations are able to recover from stochastic declines in population size due to severe 249	  

weather events, which are expected to increase in frequency. The availability of pollinators is 250	  

critical for host plants dependent on these mutualistic relationships for sexual reproduction. 251	  

In 2012, an extreme drought swept the intermountain western US and caused a 99% 252	  

reduction in overall Bombus forager abundance on Pennsylvania Mountain, Park County, 253	  

Colorado. This study conducts surveys of the post-drought Bombus community to make 254	  

measurements of the ability for pollinators to recover from significant population declines 255	  

and compares it to Bombus community data available from pre-drought years at this site. I 256	  

conducted comparisons of 1) the overall size of the Bombus community, 2) relative species 257	  

abundances, 3) relative abundances of ecologically relevant groupings of species (alpine vs. 258	  

recently invading subalpine Bombus and long vs. medium, and short-tongued bees), 4) mean 259	  

tongue length of the Bombus community, 5) measures of species diversity and richness. I 260	  

hypothesized that the severity of the population decline would cause slow recovery of overall 261	  

abundance, and that relative abundances of alpine species compared to invading non-alpine 262	  

species would be low. I also expected lower levels of diversity and richness under the 263	  
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assumption that rarer species would not be able to recover as quickly as well established 264	  

species. 265	  

 Analyses of sampled individuals revealed surprising results: the 2013 season had 266	  

higher rates of capture than any other pre-drought year. There were no significant differences 267	  

between years of relative species abundance, alpine vs. non-alpine relative abundances, 268	  

frequency of tongue length, or change in mean tongue length size. Most astonishing, 269	  

however, was that the 2013-year had the highest measurements of both species diversity and 270	  

richness when compared to all pre-drought years. These results suggest that alpine 271	  

bumblebees may have some mechanism to recover from stochastic and severe population 272	  

reductions, and that there may be unforeseen factors, such as source-sink dynamics and 273	  

dispersal, maintaining consistent community measurements after extreme weather events. 274	  

Further research should be conduction to assess long-term recovery of the Bombus 275	  

community and stability of pre-drought communities.  276	  

 277	  

Introduction 278	  

 279	  

The mounting evidence for worldwide declines of pollinator populations has 280	  

prompted rapid action to increase monitoring efforts across the globe.  Native bees, in 281	  

particular bumble bees, have received significant attention as keystone pollinators ubiquitous 282	  

to nearly all terrestrial habitats. The most recent efforts to re-survey Bombus species’ 283	  

historical ranges have revealed both changes in abundance and range shifts, with some 284	  

species experiencing significant declines and/or range contractions (Cameron et al. 2011, 285	  

Goulson et al. 2015). It is unclear how declines will affect bumble bee populations and 286	  
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communities long-term (Goulson et al. 2008, Grixti et al. 2009, Potts et al. 2010, Rasmont 287	  

and Iserbyt 2012).  288	  

Severe population reductions have the potential to trigger a cascade of adverse 289	  

effects. In bumble bees, which are eusocial pollinators, reduction of colony numbers can 290	  

reduce the overall fitness of the species or population (Allen-Wardell et al. 1998, Bouzat et 291	  

al. 1998, Darvill et al. 2006, Osborne et al. 2007, Whitehorn et al. 2009), decrease ability to 292	  

fight off parasites and disease (Gillespie 2010), and lower genetic variability in future 293	  

colonies (Ellis et al. 2006), further increasing the risk of local extinctions. 294	  

The implications of pollinator loss span beyond the pollinators themselves; loss of 295	  

pollinators correlates with loss of functionally linked native plants, and decreases in native 296	  

plant diversity (Biesmeijer et al. 2006) and agricultural productivity (Harrison 2000, Dukas 297	  

2005).  This isn’t surprising given that insect pollinators alone provide an estimated 14 298	  

billion dollars’ worth of services to the agricultural industry (Calderone 2012).   299	  

There are several causes of decline in insect pollinators including the intensification 300	  

of farming practices, monocropping, fragmentation of suitable habitats, loss of nesting sites, 301	  

increased competition from invasive and non-native species, and potentially pesticide use 302	  

(Goulson et al. 2005, 2008, 2015, Kosior et al. 2007, Potts et al. 2010, Pauw and Hawkins 303	  

2011). Findings from rural landscapes implicate climate change in driving recent losses 304	  

(Potts et al. 2010, Burkle et al. 2013). Extreme and prolonged droughts are of particular 305	  

concern because they are expected to increase in severity and persistence as climate change 306	  

continues (Dai 2012). However, in human-dominated landscapes, climate change impacts are 307	  

generally confounded with historical changes in land use.  Studies in more pristine 308	  
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ecosystems can better offer insights into climate impacts on local extinctions and other 309	  

responses of pollinator populations and communities.   310	  

This study takes advantage of a natural opportunity to observe climate impacts to 311	  

pollinators and their ability to recover from extreme weather events in a relatively untouched 312	  

alpine ecosystem in the Central Rocky Mountains. Pennsylvania Mountain Natural Area 313	  

(“Pennsylvania Mountain”), Park Co., CO, has provided the backdrop for studies of 314	  

pollinator populations since the 1970s and semi-annually since the late 2000s. These surveys 315	  

of bumble bee demography and diversity provide a baseline against which impacts of 316	  

extreme climate events can be gauged.  Here, we propose to evaluate such impacts, focusing 317	  

on the aftermath of an extreme drought in 2012 for the Pennsylvania Mountain alpine bumble 318	  

bee community that has also experienced recent introductions of new species from lower 319	  

elevation subalpine habitats since 2008 (Geib et al. 2015).  320	  

In 2012 a severe and pervasive drought hit the intermountain western US, including 321	  

Colorado, an event that is predicted to become more common in this area as shifts in rainfall 322	  

frequency and abundance become more erratic with increased warming due to climate 323	  

change (Gutzler and Robbins 2011, Pederson et al. 2013). Extreme drought extended from 324	  

March-November with impacts exacerbated by “persistent and anomalous” heat (National 325	  

Oceanic and Atmospheric Administration 2013). During the 2012 season, snowpack in the 326	  

central Rockies melted over 4 weeks ahead of average, and vegetation was drying out by 327	  

June (Lukas and Darby 2012). It was the worst drought in this area since 2002, which was 328	  

considered a benchmark year. Drought severity was on par with conditions generating the 329	  

dust bowl of the 1930s (National Oceanic and Atmospheric Administration 2013). On 330	  
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Pennsylvania Mountain, such dry conditions were further magnified by the rain shadow 331	  

effect of the Continental Divide (Peterson and Billings 1982).  332	  

Coinciding with extremely early flowering and senescence of the plant community 333	  

(average bloom time was 45% shorter than normal; Franklin 2014), dramatic reductions in 334	  

foraging bumble bee density were observed in the summer of 2012 for all species normally 335	  

present compared to the previous five years (99% reduction overall, Geib and Galen, 336	  

unpublished data). This event provided an interesting opportunity to observe re-337	  

establishment of the Bombus community following the drought and compare relative species 338	  

composition in climatically more normal years before and after the 2012 population 339	  

contractions. 340	  

Pollinator populations naturally exhibit annual, seasonal, and spatial variation in 341	  

abundance driven by changes in weather patterns (suitable temperatures, adequate rainfall) 342	  

(Rasmont and Iserbyt 2012), resource availability (including temporal and spatial floral 343	  

abundances) (Itioka et al. 2001), and competition (Zimmerman and Pleasants 1982, Thomson 344	  

2004). However, it is unclear whether alpine bumble bees, potentially isolated by 345	  

mountainous habitat, can recover from such extreme population reductions as observed in 346	  

2012 or whether local extinction is a more likely possibility.  347	  

The primary objectives of this study were to assess recovery of the alpine Bombus 348	  

community following the drought-mediated population reductions in 2012 and compare pre-349	  

and post-drought community composition. We specifically conducted comparisons of 1) the 350	  

overall size of the Bombus community, 2) relative species abundances, 3) relative 351	  

abundances of ecologically relevant groupings of species (alpine vs. recently invading 352	  
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subalpine Bombus and long vs. medium, and short-tongued bees), 4) mean tongue length of 353	  

the Bombus community, 5) measures of species diversity and richness. 354	  

We expected to see slow re-establishment of alpine bumble bee populations, leading 355	  

to generally fewer foragers of alpine species during the 2013 blooming season. We also 356	  

hypothesized that the drought might facilitate further upward movements of subalpine 357	  

species above tree line, altering community composition and relative species abundances.  358	  

 359	  

Methods 360	  

 361	  

Site and Study System 362	  

 All samples for this study were collected at Pennsylvania Mountain Natural Area 363	  

(“Pennsylvania Mountain”), Park County, Colorado, USA, in late July-August 2013 and 364	  

2014.  Pennsylvania Mountain is divided by the headwaters of an east-flowing stream, 365	  

Pennsylvania Creek. The southern half of the mountain is characterized by a number of east-366	  

facing slopes, each topped by ridges or plateaus, extending from tree line (~3500 m) upward 367	  

to the summit 3963 meters. Above tree line, slope faces comprise a matrix of interspersed 368	  

alpine meadows and fell fields, and flora consists mainly of flowering perennials 369	  

characteristic of alpine habitats, grasses, and sedges.  370	  

Historical surveys of bumble bees (Bombus) on Pennsylvania Mountain in the late 1970s 371	  

revealed a community that typically consisted of Bombus balteatus, B. sylvicola, and B. 372	  

frigidus (Byron 1980). Bombus balteatus and B. sylvicola dominated the alpine tundra 373	  

regions above 3600 meters (99% of foraging individuals, Byron 1980), with rare appearances 374	  

of Bombus frigidus. Low alpine bumble bees, Bombus flavifrons and B. bifarious, were most 375	  
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abundant at elevations below 3100 meters. More recent surveys at Pennsylvania Mountain 376	  

in2008, 2011, and 2012 sampled the bumble bee community at elevations between 3600 and 377	  

3800 meters. Surveys in 2008 and 2011 revealed surprising proportions of low-elevation 378	  

bumble bees sharing elevation and niche space with the historically dominant alpine species 379	  

(Geib et al. 2015). Though it is unclear when the shift in the bumble bee community 380	  

composition first occurred, it is possible that the warmer, dryer climate and more frequent 381	  

droughts that have characterized Colorado since the 1990s (Saunders et al. 2008) facilitated 382	  

establishment of non-native species in this habitat. Such upward shifts in species ranges in 383	  

response to climatic warming have been widely forecast. 384	  

 385	  

Bumble Bee Surveys 386	  

In 2013, foraging bumble bee workers were lethally sampled at four sites above 387	  

timberline on Pennsylvania Mountain, following the methods of Geib et al. (2015).  Foraging 388	  

bumble bees of the worker caste were the targets of these surveys because they are the 389	  

primary agents of critical pollination services to plants; benefits to plants from pollination 390	  

services are density-dependent, correlating with abundance of their mutualist pollinators 391	  

(Dewenter 2003, Geib and Galen 2012). Surveys were conducted between July 25th and 392	  

August 6th, for 26 person-hours, with equal effort at all sites. In 2014, a reduced survey was 393	  

conducted at the lowest alpine site only on August 4th for six person hours. The collection site 394	  

locations coincided with those in 2008 and 2011, and are described in Geib et al. (2015). All 395	  

sites contained extensive patches of bee-pollinated plant species (Byron 1980), and were in 396	  

full bloom during the sampling period, which coincides with the peak abundance of foraging 397	  

worker bees. These semi-annual surveys are conducted at this time to minimize detrimental 398	  
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impacts to brood rearing and production of reproductive castes (which occurs at the end of 399	  

the summer). In all surveys, bees were collected using nets and stored in iced vials to 400	  

minimize stress. After all daily collections, worker bees were placed in a freezer until torpor 401	  

and transferred to centrifuge tubes filled with 95% ethanol. They were stored at -20°C until 402	  

return to Appalachian State University, Boone, NC, where they were dried, pinned, and 403	  

identified to species.  404	  

 405	  

Metrics and Statistical Analyses 406	  

To assess changes to the bumble bee community following drought-mediated 407	  

population contractions of 2012, I compared all dependent variables among survey years, 408	  

with2013 and 2014 surveys considered “post-drought” and 2008 and 2011 considered “pre-409	  

drought”. Drought classification data was gathered from the US Drought Monitor based on 410	  

June 17-July 1 reports of respective years. All precipitation accumulation data was gathered 411	  

from the Natural Resources Conservation Service SNOTEL website 412	  

(http://www.wcc.nrcs.usda.gov/snow/). 2008 was considered “normal” in temperature and 413	  

precipitation for Colorado by July of the water year. Around the same time in 2011, the 414	  

region was teetering between “abnormally dry” to moderate drought levels. After the historic 415	  

2012 drought, precipitation had improved conditions to “abnormally dry” and moderate 416	  

drought levels by July of 2013, and following an exceptionally wet winter, normal non-417	  

drought conditions had been reestablished for the region by late June of 2014. The years 418	  

2008, 2011, 2013, and 2014 all had winter (December – May) precipitation averages ranging 419	  

from 67.3 mm - 75.8 mm. In contrast, the in the severe drought year, 2012, the region 420	  

received only 38.5 mm of snow water equivalent for the winter, which amounts to 57% of 421	  

precipitation received compared to the next driest year. Winter precipitation rates are 422	  
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particularly important for bumble bees as snow accumulation insulates overwintering queens 423	  

and provides early water resources in the form of runoff when queens and plants begin to 424	  

emerge in the spring.  Averaging winter and summer precipitation combined for non-drought 425	  

years ranged from 63 mm - 69.7mm, while the 2012 drought year received 51.3 mm. 426	  

I assessed pre-post drought changes in the forager community from a number of 427	  

perspectives. Unless otherwise noted, all statistical analyses were conducted using JMP 428	  

(Version 9.0.01, SAS Institute, Inc.). 429	  

 430	  

Total Forager Abundance 431	  

I compared capture rates during forager surveys as a proxy for comparing the overall 432	  

size of the Bombus community among survey years. Given that the total effort invested in 433	  

bumble bee surveys was not equal every year, I standardized capture rates by dividing the 434	  

number of bees sampled at each site by the number of person hours of surveying time. 435	  

Despite potential for differences in capture rate among individual researchers, this measure 436	  

appears to be the most appropriate index of “absolute” abundance (Pyke et al. 2012). I 437	  

conducted comparisons using analysis of variance (ANOVA), with site as the unit of analysis 438	  

(n = 4, 2, and 4 sites, respectively for 2008, 2011, and 2013), and year as the main fixed 439	  

effect.  Because the 2014 bumble bee survey lacked replicate sites (n = 1), it could not be 440	  

statistically compared to other years, although the data is included in figures for comparison.  441	  

 442	  

Species Composition of the Bumble Bee Community 443	  

To assess whether the makeup of the Bombus community varied significantly pre- 444	  

and post-drought I used ANOVA to test for differences in relative abundances (proportions) 445	  
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comprised by each species among survey years. Proportions were arcsine-square-root 446	  

transformed prior to analysis. Site was the unit of analysis, and year, species, and year x 447	  

species were included as fixed model effects. Pairwise comparisons of Least Squares Means 448	  

(LS Means) were conducted with Student’s t-test. 449	  

I then asked whether drought was facilitating upward shifts of subalpine bumble bees 450	  

into this alpine habitat by comparing relative abundance of species in two groups: 451	  

proportions of historically dominant high alpine species (B. balteatus and B. sylvicola) and 452	  

lower alpine species that have begun to populate the high alpine within the last ten years (B. 453	  

flavifrons, B. frigidus, B. bifarius, B. mixtus). Statistical comparisons were conducted for 454	  

years with multiple sample sites (2008, 2011, 2013) via ANOVA, with year, ecological 455	  

grouping, and year x ecological grouping as fixed model effects. Proportions were arcsine-456	  

square-root transformed prior to analysis. Pairwise comparisons of LS Means were 457	  

conducted with Student’s t-test. 458	  

 459	  

Distribution of Traits Relevant to Pollination 460	  

 Pollinators partition themselves among the plant community based on matching 461	  

between tongue and corolla tube length (Rodríguez-Gironés and Santamaría 2006, Pyke et al. 462	  

2012). Changes in relative bumble bee species abundances may alter the relative proportion 463	  

of long vs. short-tongued bees in the Bombus community with implications for benefits to 464	  

host plants. Bombus balteatus is an especially important pollinator in alpine habitats of this 465	  

region as it is the only long tongued pollinator. To ask whether the relative frequency of 466	  

tongue lengths varied following drought-mediated population contractions, I grouped bumble 467	  

bee species by three tongue length categories: long (B. balteatus), medium (B. flavifrons, and 468	  
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B. centralis), and short (B. bifarius, B. frigidus, B. sylvicola, B. mixtus, and B. melanopygus) 469	  

(Pyke et al. 2012). ANOVA was used to test for differences in proportions of tongue length 470	  

groups among years with site as the unit of analysis. Proportions were arcsine-square-root 471	  

transformed prior to analysis. I also calculated mean tongue length of the bumble bee 472	  

community by multiplying the relative species proportions at each site by the species-specific 473	  

mean tongue length for workers as determined by Macior (1974). Again, differences in mean 474	  

tongue length among years were assessed using ANOVA with site as the unit of analysis.  475	  

 476	  

Species Diversity and Richness 477	  

Species diversity and richness were calculated in R using the Vegan package, which 478	  

implements the Shannon-Weiner Index (SWI, value increases when number of species and 479	  

the evenness of species increases). Diversity was calculated as follows:   480	  

             s 481	  

H = ∑ - (Pi * ln Pi) 482	  

           i=1 483	  

Here, H is the Shannon diversity Index (SWI), Pi is the fraction of entire population made of 484	  

species i, S is the number of species encountered, and ∑ is the sum from species 1 to species 485	  

S.  486	  

Species richness is derived from the number of species present, but does not take into 487	  

account abundance or distribution. It is calculated by averaging the number of species found 488	  

per site by year. Differences in species diversity among years were assessed using ANOVA 489	  

with site as the unit of analysis.  490	  
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Results 491	  

 492	  

Total Forager Abundance 493	  

Pre-post drought comparisons of foraging worker bumble bee capture rates as a proxy 494	  

for total forager abundance revealed that the overall availability of foragers varied drastically 495	  

among years (One-way ANOVA F (3,10) = 42.19, p = <0.0001; Figure 1, Table 2).  496	  

However, there were just as many Bombus foragers present in 2013 compared to pre-drought 497	  

years; in fact, there were more bees caught per person-hour per site on average that year. The 498	  

788 workers caught in 30 person hours represented the highest rate of bee capture of 26.3 499	  

bees/ hour compared to 18 bees/hour in 2008 and just 12 bees/hour in 2011.  2014 capture 500	  

rates were in line with those of pre-drought years, although no statistical comparisons could 501	  

be conducted due to lack of site replication. 502	  

 503	  

Species Composition of the Bumble Bee Community 504	  

Comparing relative species proportions among years revealed significant temporal 505	  

oscillation in community structure. (ANOVA whole model F (23,56) = 19.78, p < 0.0001; 506	  

ANOVA year x species F (14) = 2.86, p < 0.0027) due to the differences in species 507	  

proportions within years, F (7) = 3.45, p < 0.0001.  Bombus balteatus comprised overall the 508	  

greatest proportion of the community, on average (Pairwise LS Means comparisons p < 509	  

0.05). 510	  

Comparing alpine vs. non-alpine bees in the three sampled years revealed temporal 511	  

stability, with no significant differences among years (Figure 3, Table 2, ANOVA whole 512	  

model F (5,14) = 0.7390, p = 0.6067).  513	  
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 514	  

Distribution of Traits Relevant to Pollination 515	  

The average pollinator tongue length on Pennsylvania Mountain did not vary in any 516	  

of the three years sampled (Figure 4, Table 2, F (2,7) = 1.119, p = 0.3785). The frequency of 517	  

tongue length groups within the community showed tendency to vary among years but 518	  

presented no evidence of significantly changing after the drought (Figure 5, Table 2, 519	  

ANOVA whole model F (8,21) = 2.0531, p = 0.0892; ANOVA year x tongue group F (4) = 520	  

2.15, p = 0.1096). 521	  

 522	  

Species Diversity and Richness 523	  

Worker bee samples from 2008, 2011, 2013, and 2014 revealed 8 different species 524	  

inhabiting Pennsylvania Mountain. The year 2014 had the lowest amount of species richness 525	  

(4) and diversity measurements from the Shannon-Weiner D index (1.015), but this year was 526	  

only sampled at one site and could not be compared. The 2013 season had the highest level 527	  

of species richness and diversity (richness = 6.25, diversity Shannon’s D = 1.459), mostly 528	  

due to the appearance of two low-alpine species, Bombus mixtus and B. melanopygus, with 529	  

the latter species not found in any other year. However, there were no significant differences 530	  

in diversity among years (Figure 6, Table 2, ANOVA F (2,7) = 0.3078, p = 0.7445).  531	  

 532	  

Discussion 533	  

 534	  

By comparing characteristics of an alpine bumble bee community over a number of 535	  

years prior to and following the severe 2012 drought in the Colorado Rocky Mountains, I 536	  
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could find no evidence of carry-over effects from the resulting drought-mediated population 537	  

contractions. Relative abundances of both native alpine and invading subalpine bees 538	  

fluctuated in a pattern that did not support drought as a causal agent. When looking at bees 539	  

grouped by functional traits important to partnering host plants, neither average tongue 540	  

length in the community nor frequency of observed tongue length changed, and there was no 541	  

loss in species diversity or richness. 542	  

 543	  

Total Forager Abundance 544	  

 I hypothesized that there would be slow recovery of total forager abundance in the 545	  

Pennsylvania Mountain bumble bee community after the dramatic population declines of 546	  

both native alpine and invasive subalpine bumble bees during 2012, but the 2013-year 547	  

samples revealed that this year had the highest total forager abundance and rate of capture of 548	  

all surveyed years. It is possible that a small number of queens were able to produce a new 549	  

reproductive caste, which contributed to the large number of foragers seen the following year 550	  

(the old queens will typically die at the end of the season after laying the reproductive caste) 551	  

(Goulson 2010). It seems more realistic, however, that heavy immigration from other source 552	  

populations were responsible for the rapid repopulation of the alpine portion of Pennsylvania 553	  

Mountain. It is thought that high alpine mountaintops may act as “sky islands” and might 554	  

limit the amount of immigration and dispersal from one mountaintop to another. However, 555	  

because of the rapid replacement of all Bombus species it is likely that the mountains are not 556	  

limiting bumble bee dispersal. Although mechanisms for Bombus dispersal on mountaintops 557	  

are still unclear, it is possible that queens from nearby mountaintops immigrated early in the 558	  

season and were able to quickly find suitable habitat to establish nests.  Literature on flight 559	  
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distance of bumble bees supports that most individuals, especially queens, should be able to 560	  

traverse the linear distance between mountaintops (Knight et al. 2005, Geib et al. 2015).  561	  

However, it is unclear how the broader landscape characterized by tall mountains and deep, 562	  

windy valleys or gulches may promote or limit queen dispersal. 563	  

 564	  

Species Composition of the Bumble Bee Community 565	  

 Looking at differences in relative species abundances in semi-annual surveys of 566	  

Pennsylvania Mountain bumble bees revealed no clear pattern between pre- and post-drought 567	  

alpine Bombus communities.  Surveys on Pennsylvania Mountain since the late 2000s 568	  

showed evidence of upward shifts in the ranges of bumble bee species that typically occupy 569	  

subalpine zones when compared to historical surveys conducted in the 1970s (Geib et al. 570	  

2015), resulting in homogenization of the subalpine and alpine bumble bee communities. 571	  

Similar findings have been reported in other parts of Colorado (e.g., Front Range; Miller-572	  

Struttman et al. in review) as well as globally (e.g., Spain, Ploquin et al. 2013). In Spain, 573	  

these events have occurred coincident with a regional warming of 0.9 °C, conditions which 574	  

parallel those experienced by Colorado over the last decade (warming of 1.11°C over the last 575	  

30 years; Gordon and Ojima 2015), suggesting that the prolonged warmer, dryer conditions 576	  

experienced by Colorado over the late 1990s and 2000s facilitated increases in relative 577	  

proportions of subalpine species observed above tree line. Such predictions of upward shifts 578	  

in species ranges associated with warming have long been forecast (Walther et al. 2002, 579	  

Parmesan 2006), and similar upward shifts in Colorado plants have been attributed to this 580	  

warming (Sproull et al. 2015).  However, there was no evidence that the short-term 2012 581	  

drought, despite its severity further promoted significant upward shifts of lower elevation 582	  
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Bombus species. The 2008 and 2011 (pre-drought) Pennsylvania Mountain bumble bee 583	  

communities shared fewer similarities than did the communities in 2008 and 2013 (the year 584	  

following the severe drought).  585	  

 Most interestingly, the 2014 survey of the Pennsylvania Mountain bumble bee 586	  

community appeared to suggest an unexpected resurgence in relative abundance of alpine 587	  

bumble bee foragers. Although this survey data could not be statistically compared to others 588	  

due to lack of site replicates, the data is likely trustworthy in that only the lowest elevation 589	  

site was surveyed, which should bias data in favor of subalpine species.  This finding is 590	  

surprising, since when invasive species are established and on the rise, as they appeared to be 591	  

on Pennsylvania Mountain in recent years, they rarely undergo spontaneous decline 592	  

(Simberloff and Gibbons 2004).  593	  

There are, however, exceptions. The invasive Mountain Pine Bark Beetle began to 594	  

spiral out of control in 1996 likely due to warmer temperatures and increasing drought 595	  

conditions stressing their host tree species and making them more susceptible to a beetle 596	  

invasion. The peak of the Pine Bark Beetle population explosion occurred in 2008 (beetles 597	  

were active on 1.2 million acres of pine trees), but has dropped dramatically since then. A 598	  

2014 report on Colorado’s forests estimates that the current range of active infestation stands 599	  

at only 10,000 acres, mostly due to the death of suitable host trees (Colorado State Forest 600	  

Service 2014).  A recent study in Europe investigated the near total replacement of the 601	  

Eurasian red squirrel population with the invasive North American grey squirrel, mainly due 602	  

to effects of competition and disease. Researchers found that the recovery of a native 603	  

predator, the pine martin, was negatively correlated with grey squirrel abundance and 604	  

positively correlated with abundance of the Eurasian red squirrel (Sheehy and Lawton 2014). 605	  
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The recovery of the native predator and the native red squirrel has consequently pushed the 606	  

invasive grey squirrel populations to an unusually low density. Whether these drivers of 607	  

invasive species declines have any impact on the non-native bees on Pennsylvania Mountain 608	  

requires more research into community dynamics, resource availability, and habitat quality. 609	  

 610	  

Distribution of Traits Relevant to Pollination 611	  

 Under optimal foraging conditions, pollinators will partition themselves among the 612	  

floral community based on tongue length (Rodríguez-Gironés and Santamaría 2006), which 613	  

was why measurements regarding tongue length traits were made following the 2012 614	  

drought. Currently there is evidence to suggest that there have been worldwide declines in 615	  

the abundance of long tongued pollinators in particular, partly due to declines in deep corolla 616	  

length plants (Goulson et al. 2005). Measuring the mean tongue size would reveal any trends 617	  

favoring a particular tongue size, especially if there was a decline in the only long tongued 618	  

pollinator, Bombus balteatus. Comparing pre- and post-drought tongue length frequencies 619	  

reveals no pattern or shift in the frequency of tongue length sizes, which is consistent with 620	  

corresponding relative species abundances, so this was unsurprising.  That tongue length 621	  

group distributions remain constant despite varying species composition of the bumble bee 622	  

community suggests that pollination services to respective guilds of host plants for each 623	  

tongue length group should remain consistent.  624	  

 625	  

Species Diversity and Richness 626	  

Interestingly, the post drought 2013 year experienced the highest level of species 627	  

diversity and richness. After the 2012 population crash, I hypothesized that the community 628	  
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would recover slowly and possibly lose rare species. Losing rare species would be likely in a 629	  

degraded drought-stricken environment as they often exist at the edges of their latitudinal 630	  

range and can be poorly adapted to local conditions (Goulson et al. 2005). On the contrary, 631	  

there were appearances of three species found in 2013 that have only been observed 632	  

sporadically since 2008. The increasing number of rare species observed may be caused by 633	  

the unusually warm temperatures this region has been experiencing within the last decade.  634	  

In a similar study conducted in sub-tropical reef-fish communities, warming sea 635	  

temperatures increased levels of species richness. The researchers hypothesized that there 636	  

would be a reduction in the abundance of individual temperate (native) species due to 637	  

predicted range contractions and an increase of abundance of tropical (non native) fish 638	  

species as a predicted consequence of warming. Instead, they found no support for a general 639	  

reduction in abundance of temperate species, and richness and diversity increased by 33% 640	  

and 15% respectively (Lloyd et al. 2012). The measurements of species richness and 641	  

diversity within this study revealed similar trends.  642	  

An important aspect of studying pollinator decline and recovery is assessing 643	  

implications for plant populations. In alpine ecosystems, many plants are exceptionally long-644	  

lived perennials (Billings and Mooney 1968). The trade offs for such lengthy lifespans are 645	  

low recruitment and low offspring survival rates, a strategy that protects the plant population 646	  

from occasions where sexual reproduction is resourced limited (Silvertown et al. 1993). The 647	  

apparent absence of pollinators during the 2012 drought may not have had major impacts the 648	  

overall plant population, but may have been a source of pollen limitation for new seed 649	  

production and recruitment. In years of such extreme drought, plant reproduction may be 650	  
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more restricted by water resources, and plants may have low fecundity regardless of pollen 651	  

availability (Herrera 1991).  652	  

 653	  

Further Research 654	  

Further research is necessary to answer the questions that arise from the findings 655	  

following the 2012 drought. If these mountaintops are not working as isolated island habitats, 656	  

source-sink dynamics may be working to maintain populations of alpine bumble bees on 657	  

Pennsylvania Mountain, but so far no research has investigated such metapopulation 658	  

dynamics and dispersal in bumble bees in mountain habitats or any other save islands (see 659	  

Goulson et al. 2011). Other research should also be conducted to search for possible survival 660	  

strategies that bumble bees may utilize when severe weather events and plant failures occur. 661	  

Although this study measured the bumble bee community in the year directly following the 662	  

collapse of a community, there may be a lag effect that could be observed in two or three 663	  

years after the event. Events such as prolonged drought lasting multiple years may also cause 664	  

more serious and significant changes to a Bombus community than can be observed in just 665	  

one season. This may be the case for the decade long drought of the late 1990s and early 666	  

2000s that characterized this region of Colorado, possibly triggering the invasion of alpine 667	  

habitats by subalpine species.668	  
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Table 1: Average precipitation in millimeters on Pennsylvania Mountain. 669	  
	   Year	  Average	   Winter	  Average	   Summer	  Average	   Summer	  and	  Winter	  Average	  
2007	   61.64	   54.67	   76.00	   61.78	  
2008	   61.45	   71.83	   60.33	   68.00	  
2011	   65.82	   72.00	   56.00	   66.67	  
2012	   50.09	   38.50	   77.00	   51.33	  
2013	   55.00	   67.33	   54.33	   63.00	  
2014	   64.00	   75.83	   57.67	  

	    670	  
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Table 2: ANOVA Tables for A) Year effects on rate of capture in 2008, 2011, 2012, 2013, 671	  

and 2014, B) Year and species effects on species relative abundance proportions in 2008, 672	  

2011, and 2013, C) Year and ecological grouping effects for alpine vs. other proportions in 673	  

2008, 2011, and 2013, D) Year and tongue length effects on frequency of tongue length in 674	  

2008, 2011, and 2013, E) Year effects on mean tongue length in 2008, 2011, and 2013. 675	  

	   Source	   D.F.	   SS	   F	  Ratio	   Prob	  >	  F	  
A	  -‐	  Rate	  of	  Capture	   Year	   4	   188.66	   1.66E+16	   <0.0001*	  
	   Error	   5	   1.42E-‐14	   	   	  
B-‐	  Species	  Proportion	   Year	   2	   0.01	   0.63	   0.5452	  
	   Species	   5	   0.27	   6.50	   0.0013*	  
	   Species	  *	  Year	   10	   0.12	   1.41	   0.2527	  
	   Error	   18	   0.15	   	   	  
C	  -‐	  Alpine	  VS	  Other	   Year	   2	   0.03	   1.03	   0.3687	  
	   Alpine	  VS	  Other	   1	   0.12	   9.88	   0.0037*	  
	   Year	  *	  Alpine	  VS	  Other	   2	   0.04	   1.74	   0.1931	  
	   Error	   30	   0.37	   	   	  
D	  -‐	  Tongue	  Length	  Frequency	   Year	   2	   0.01	   0.31	   0.7346	  
	   Tongue	  Length	   2	   0.21	   9.92	   0.0006*	  
	   Year	  *	  Tongue	  Length	   4	   0.04	   1.03	   0.4113	  
	   Error	   27	   0.28	   	   	  
E	  -‐	  Mean	  Tongue	  Length	   Year	   2	   0.01	   0.12	   0.8905	  
	   Error	   3	   0.11	   	   	  
  676	  
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Table 3: Table of Bombus species diversity, richness, and evenness. 677	  

 
2008 2011 2013 2014 

n 238 192 348 112 
Richness 5.5 5 6 4 

Shannon Index (ln) 1.425922 1.4185015 1.4331715 1.014869467 
Evenness 0.83644147 0.881364537 0.799868244 0.732073574 

  678	  
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Figure Legends 679	  

 680	  

Fig. 1 Figure 1: Capture rate of foraging worker bumble bees during semi-annual surveys at 681	  

Pennsylvania Mountain Natural Area, Park County, CO.  Bars are means of all sites surveyed 682	  

that year (n = 4 sites for 2008, 2012, and 2013; n = 2 and 1 sites for 2011 and 2014, 683	  

respectively. 2014 is included only for visual comparison and was not included in statistical 684	  

analyses. Error bars represent standard error. 685	  

 686	  

Figure 2: Relative abundance of Bombus species in semi-annual surveys conducted at 687	  

Pennsylvania Mountain Natural Area, Park County, CO.  Proportions are means of all sites 688	  

surveyed that year (n = 4 sites for 2008, 2012, and 2013; n = 2 and 1 sites for 2011 and 2014, 689	  

respectively. 2014 is included only for visual comparison and was not included in statistical 690	  

analyses. Error bars represent standard error.  691	  

 692	  

Figure 3: Relative abundance of alpine and sub-alpine worker bumble bees in semi-annual 693	  

surveys at Pennsylvania Mountain Natural Area, Park County, CO. Bars are means of all 694	  

sites surveyed that year (n = 4 sites for 2008, 2012, and 2013; n = 2 and 1 sites for 2011 and 695	  

2014, respectively. 2014 is included only for visual comparison and was not included in 696	  

statistical analyses. Error bars represent standard error. 697	  

 698	  
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Figure 4: Mean tongue length of all foraging worker bees caught during semi-annual surveys 699	  

at Pennsylvania Mountain Natural Area, Park County, CO. Tongue lengths of worker bees 700	  

were based on means reported by Macior (1974). Bars are means of all bees in sites surveyed 701	  

that year (n = 4 sites for 2008, 2012, and 2013; n = 2 and 1 sites for 2011 and 2014, 702	  

respectively. 2014 is included only for visual comparison and was not included in statistical 703	  

analyses. Error bars represent standard error. 704	  

 705	  

Figure 5: Relative frequency of short, medium, and long-tongued worker bumble bees in 706	  

semi-annual surveys at Pennsylvania Mountain Natural Area, Park County, CO. Bars are 707	  

means of all sites surveyed that year (n = 4 sites for 2008, 2012, and 2013; n = 2 and 1 sites 708	  

for 2011 and 2014, respectively. 2014 is included only for visual comparison and was not 709	  

included in statistical analyses. Error bars represent standard error.  710	  

 711	  

Figure 6: Shannon Weiner Diversity Index (ln) for bumble bee species observed in semi-712	  

annual surveys of foraging workers at Pennsylvania Mountain Natural Area, Park County, 713	  

CO. Bars are means of all sites surveyed that year (n = 4 sites for 2008, 2012, and 2013; n = 714	  

2 and 1 sites for 2011 and 2014, respectively. 2014 is included only for visual comparison 715	  

and was not included in statistical analyses. Error bars represent standard error. 716	  

 717	  

Figure 7: Species richness observed in semi-annual surveys of foraging workers at 718	  

Pennsylvania Mountain Natural Area, Park County, CO. Bars are means of all sites surveyed 719	  
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that year (n = 4 sites for 2008, 2012, and 2013; n = 2 and 1 sites for 2011 and 2014, 720	  

respectively. 2014 is included only for visual comparison and was not included in statistical 721	  

analyses. Error bars represent standard error.   722	  
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Figure 2.  726	  
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Figure 3.  728	  
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Figure 4. 730	  
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Figure 5. 732	  
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Figure 6. 734	  
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Figure 7. 736	  
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Chapter 3 738	  

ABSTRACT 739	  

NO EVIDENCE OF A GENETIC SIGNATURE FOLLOWING A DROUGHT-740	  
MEDIATED DEMOGRAPHIC BOTTLENECK IN AN ALPINE BUMBLE BEE, BOMBUS 741	  

BALTEATUS  742	  
 743	  

When populations experience severe and rapid declines in population size, large 744	  

amounts of genetic variation can be lost and result in a genetic bottleneck. In 2012, an 745	  

extreme drought decimated the alpine Bombus community on Pennsylvania Mountain, Park 746	  

County, Colorado, and surveys conducted found no reproductive individuals at the end of the 747	  

season. Because of this population contraction and lack of reproductives, I hypothesized that 748	  

samples from 2013 would reflect a genetic bottleneck and that measurements of effective 749	  

population size would be lower than in previous non-drought years. I collected samples of all 750	  

available Bombus balteatus foragers present at the end of the 2013 season and used 751	  

genotypes to assess population health. PCR was used to amplify nine microsatellite loci to 752	  

provide genotype data for analysis. Genotypes were analyzed in COLONY 2.0 to assign 753	  

sibships of individuals and estimate effective population size. Three commonly used 754	  

bottleneck testing methods were implemented to look for evidence of a genetic bottleneck 755	  

signature: the M-ratio, the heterozygosity excess, and the mode shift test.  756	  

 There was no significant decrease in effective population size in 2013 when 757	  

compared to pre-drought years, even though the 2012 effective population size was 758	  

effectively zero. Despite the significant observed demographic contraction that occurred in 759	  
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the 2012 Bombus balteatus population, none of the tests used were able to detect any 760	  

evidence of a genetic bottleneck within the 2013 population. These results suggest that 761	  

bumble bees may have some method to tolerate or recover from stochastic and sharp declines 762	  

in population numbers. Results refute the idea of alpine mountaintops as “sky islands”, and 763	  

hint that immigration and dispersal among peaks may work to maintain genetic diversity. In 764	  

order to increase power and statistical strength of bottleneck tests, sampling of the Bombus 765	  

balteatus community should continue for several generations to ensure there is not a “false 766	  

negative” period directly after the bottleneck that may be confounding the results. Findings 767	  

provide hope for B. baltaeatus and its linked specialist host plants, given dire predictions for 768	  

increasing drought frequency in the US Intermountain West under climate change models.  769	  

 770	  

Introduction 771	  

 772	  

When a population experiences a significant rapid decrease in size (a “demographic 773	  

bottleneck”) it can lead to a corresponding decrease in genetic variability. The loss in allele 774	  

diversity leads to a smaller pool of available genetic variation within the following 775	  

generation and can severely impact the species ability to adapt to change and can increase 776	  

chances of local extirpation (Freeland 2005). Specific detrimental effects that can negatively 777	  

impact the future of the population include more frequent inbreeding (Darvill et al. 2006) and 778	  

inability to fight parasite and disease (Liersch and Schmid-Hempel 1998, Gillespie 2010).  779	  

Genetic fitness is negatively impacted after a bottleneck because the frequency of rare 780	  

deleterious recessive alleles can increase (fixation) and cause inbreeding depression (Ellis et 781	  

al. 2006). These impacts can vary from species to species and are heavily influenced by 782	  
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demographic factors such as metapopulation dynamics, genetic drift, mutation rates, and 783	  

adaptive pressures (Freeland 2005). 784	  

Searching for evidence of genetic bottlenecks is a commonly used technique in 785	  

conservation, especially as it relates to worldwide species decline (Bouzat et al. 1998, 786	  

Whitehouse and Harley 2001, Sinclair et al. 2002, Darvill et al. 2006). The molecular 787	  

methods used in searching for bottlenecks can provide insights to the genetic structure and 788	  

history of a population. Some methods assume that bottlenecked populations will experience 789	  

reductions in allelic diversity faster than heterozygosity (in the sense of Nei 1987), so a 790	  

bottleneck can be detected when observed heterozygosity is larger than expected at mutation-791	  

drift equilibrium based on a particular mutation model (Cornuet and Luikart 1996). Other 792	  

tests operate under the assumption that rare alleles will be lost after a large population 793	  

decline and create a shift in allele distribution (Luikart et al. 1998a). A third testing method 794	  

predicts that a bottleneck will cause a shift in the ratio of number of alleles at a locus to the 795	  

range in allele size (Garza and Williamson 2001). 796	  

There are several challenges when searching for evidence of a genetic bottleneck. In 797	  

many instances, genetic data is only collected after a suspected bottleneck event has 798	  

occurred, with no past genetic information available (Queney et al. 2000, Whitehouse and 799	  

Harley 2001, Sinclair et al. 2002). This makes it difficult to decide as to whether or not a past 800	  

bottleneck can explain low levels of genetic diversity. The ability to detect a bottleneck also 801	  

depends on the severity, which is measured by how significantly the population size has been 802	  

reduced and how quickly the population has been able to recover (Freeland 2005). Current 803	  

methods used to detect the genetic signature of a bottleneck from a single population census 804	  

often require prior knowledge of mutation rate, initial size of the population, and details of 805	  
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the mutation process (Williamson-Natesan 2005), which may be unknown. Furthermore, the 806	  

quality of molecular genetic markers, available sample size, and time passed since the 807	  

bottleneck event will influence the ability to accurately detect a population bottleneck 808	  

(Luikart and Cornuet 1998, Freeland 2005, Selkoe and Toonen 2006).  809	  

This study focuses on genetic impacts to a population of native alpine bumble bees 810	  

(Bombus balteatus) following drastic reductions to their numbers during a severe drought in 811	  

2012 in the American intermountain west.  The B. balteatus population located within 812	  

Pennsylvania Mountain Natural Area, Park County, Colorado, has been well studied, with 813	  

demographic information available since the 1970s and genetic data available since 2008 814	  

(e.g., see Geib et al 2015). In 2012, a severe and pervasive drought struck the intermountain 815	  

western US, including Colorado (National Oceanic and Atmospheric Administration 2013). 816	  

Drastic declines were observed for all resident bumble bee species at Pennsylvania Mountain 817	  

during the census that year (99% fewer foragers overall and no observed reproductives of any 818	  

species; Geib and Galen unpublished data). This was likely caused by early senescence of 819	  

the plant community, as average bloom time was 45% shorter than normal (Franklin 2014).  820	  

Most social insects such as bumble bees follow a caste system that has few breeding 821	  

individuals and many sterile workers. Some have expressed increased queen-male 822	  

relatedness and positive inbreeding coefficients when populations are divided or decline in 823	  

number (Sundstrom et al. 2003, Ellis et al. 2006). However, some argue that even if there is a 824	  

loss in genetic diversity in hymenopterans, the sex determination by the haploid sex will 825	  

purge deleterious recessive alleles (Sorati et al. 1996). An additional risk of low genetic 826	  

variability in social hymenoptera species is that the single-locus complementary sex 827	  

determination system can create sterile diploid males, which are a cost to the colony 828	  
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(Whitehorn et al. 2009, Charman et al. 2010). This creates lowered overall fitness of a 829	  

population even if deleterious recessive alleles do not persist. Despite the growing evidence 830	  

that bumble bees around the world have experienced significant range contractions and 831	  

population declines (Colla and Packer 2008, Goulson et al. 2015), it is unknown how 832	  

widespread these genetic issues may be in their populations. 833	  

The objective of this study was to assess the genetic health of the 2013 B. balteatus 834	  

population one year following a severe drought, by 1) documenting size of breeding 835	  

population on Pennsylvania Mountain (“effective population size”, Ne) and 2) testing for 836	  

signatures of the population contraction in allele frequencies and distribution (bottleneck 837	  

effects). Pre-drought genetic information from 2008 serves as a comparison for populations 838	  

under normal conditions.   839	  

I hypothesized that the high elevation mountaintops occupied by B. balteatus may act 840	  

as “sky islands” and limit rapid dispersal and immigration. I expected that the B. balteatus 841	  

breeding population (effective population size, Ne) on Pennsylvania Mountain in the year 842	  

following the drought would be reduced compared to a relatively normal year. Estimates of 843	  

Ne serve as important indicators of bumble bee health as they measure the number of 844	  

individuals that can breed and contribute genetic diversity to future generations. Drought-845	  

mediated reductions of B. balteatus populations on Pennsylvania Mountain in 2012 may have 846	  

created a genetic bottleneck that could be observed by analyzing genotypes of subsequent 847	  

populations, and I expected that the collected genotypes from 2013 would reveal that such an 848	  

event had recently occurred. 849	  

 850	  

 851	  
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Methods 852	  

 853	  

Study Site and System 854	  

All samples used in this study were collected as part of a semi-annual survey of 855	  

foraging worker bumble bees at Pennsylvania Mountain Natural Area (Pennsylvania 856	  

Mountain), Park County, Colorado, July 25 - August 5, 2013. Pennsylvania Mountain (4000 857	  

m) is situated in the Mosquito Range of Central Colorado. The peaks of the range are quite 858	  

high (five are > 14,000 ft) and form a north-south running ridge along the boundary between 859	  

Lake and Park Counties. High elevation ridges connect many peaks. Higher peaks and ridges 860	  

surround Pennsylvania Mountain on three sides (Fig 1), but are separated from its slopes by 861	  

steep gulches to the north and south and a wide valley to the west.   862	  

Pennsylvania Mountain itself is divided by the headwaters of Pennsylvania Creek 863	  

(Fig 1).  The northern half of the mountain is characterized by significant land use from 864	  

mining, but the southern half that comprises the Pennsylvania Mountain Natural Area and 865	  

research station is relatively pristine. From treeline (3530 m) to the false summit (3800 m) it 866	  

is comprised of a number of east-facing slopes characterized by a matrix of dry and moist 867	  

alpine meadows and rocky fell fields.   868	  

The bumble bee community on Pennsylvania Mountain contains the historically present 869	  

alpine species B. balteatus, B. sylvicola, and B. frigidus, plus significant numbers of recent 870	  

subalpine invaders B. bifarius, B. flavifrons, and rare appearances of B. centralis, B. 871	  

melanopygus, B. mixtus, B. nevadensis and B. appositus (Byron 1980, Geib et al. 2015). All 872	  

species commonly present experienced severe population contractions in 2012, following 873	  

early senescence of the plant community. Of these species, B. balteatus (Hymenoptera: 874	  
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Apidae) was selected as the focal species because it is a historically dominant alpine species 875	  

(Macior 1974), is the only long-tongue pollinator on above treeline (Pyke et al. 2012), and is 876	  

responsible for pollination services to a range of ecologically important plants (Macior 1974, 877	  

Geib and Galen 2012).  878	  

The 2013 survey that provided samples of B. balteatus workers for genetic analysis 879	  

occurred on the relatively pristine southern half of Pennsylvania Mountain. Four alpine sites 880	  

(50 m radius) were sampled, two high alpine (3730 m and 3735 m) and two low alpine (3659 881	  

m and 3698 m). All sites and methods corresponded with those of Geib et al. 2015. 882	  

Collections occurred during peak abundance of foraging bumble bee workers during the 883	  

latter half of the flowering season (e.g., see Pyke et al. 2012) when the collection sites were 884	  

also in full bloom. Bees were collected using nets and stored in iced vials to minimize stress. 885	  

After daily collections, bees were placed in a freezer until torpor and transferred to centrifuge 886	  

tubes filled with 95% ethanol. They were stored at -20°C until return to Appalachian State 887	  

University, Boone, NC, where they were dried, pinned, and identified to species.  888	  

 889	  

Molecular Methods 890	  

To conduct the genetic bottleneck tests, I chose to use microsatellites as genetic 891	  

markers. Microsatellites are often used in population genetics as they can reveal the genetic 892	  

structure of subpopulations and populations (F-statistics), reveal events in demographic 893	  

history such as bottlenecks and gene flow, and asses effective population sizes (Luikart et al. 894	  

1998b, Piry et al. 1999, Balloux and Lugon-Moulin 2002, Williamson-Natesan 2005). 895	  

Microsatellites are highly variable between insects and have faster mutation rates compared 896	  

to other sequences, which makes them useful for determining variation between recent 897	  
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generations (Peery et al. 2013). Microsatellites are typically co-dominant, which makes 898	  

calculating allele frequencies much easier, as it allows the ability to distinguish between 899	  

homozygous and heterozygous individuals (Freeland 2005).  900	  

 DNA was extracted from whole B. balteatus workers using a tissue and cell DNA 901	  

isolation kit (MO BIO, Carlsbad, CA) utilizing the included modified tough-tissue protocol. 902	  

Modifications included the addition of proteinase-k (20 mg/mL) and placing the extraction 903	  

tubes in a heat block at 55°C for 30 minutes. Once extractions were complete, PCR was used 904	  

to amplify nine predetermined microsatellite loci (B124, BL12, BTERN01, BT10, B96, 905	  

B119, BL11, B10, BT28) (Estoup et al. 1996, Reber, Funk et al. 2006, Lozier et al. 2011) in 906	  

two multiplex reactions. Each well contained 2 μL 5X buffer (Promega, Madison, WI), 0.56 907	  

μL 25 mM MgCl2, 0.6 μL 0.6 mM dNTP, 0.2 μL BSA, 0.08 μL of Taq polymerase 908	  

(Promega, Madison, WI), and 1 μL of extracted DNA. The wells in plex A contained 3.50 μL 909	  

H2O and four primers (10mM) and wells in plex B contained 3.16 H2O and five primers 910	  

(10mM). Forward primers were fluorescently dye labeled (Life Technologies, Carlsbad, CA). 911	  

Both Plex A and B reactions ran for 7 minutes at 95°C, 30 cycles of 95°C for 30 s, 53°C for 912	  

30 s, 72°C for 30 s and a final period at 72°C for 10 minutes. Amplified DNA was sent to the 913	  

Georgia Genomics Facility at University of Georgia (Athens, GA) to be sequenced on ABI 914	  

3730xl capillary DNA sequencer (Applied Biosystems, Carlsbad, CA, USA). 915	  

Alleles were scored manually using Peak Scanner software (Version 2.0, Applied 916	  

Biosystems) and samples that lacked data or were ambiguous at more than half of loci were 917	  

excluded from analysis. Of the nine loci amplified in PCR, only five yielded polymorphic 918	  

and unambiguous genotypes for 2013 samples (B119 was monomorphic, BTERN01 and 919	  

BT28 were ambiguous, and B124 did not amplify). After discarding unusable loci, 70 usable 920	  
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genotypes remained, which were used for further analysis.  Bombus balteatus genetic data 921	  

from the same Pennsylvania Mountain sites in 2008 (n = 112 individual genotypes, accessed 922	  

from Geib et al. 2014, 2015) were also included in all analyses for qualitative comparison of 923	  

post-drought patterns to those prior to the drought.  From these samples, six alleles yielded 924	  

polymorphic and non-ambiguous genotypes (B116, B119, and BT28 were monomorphic and 925	  

BTERN01 did not amplify). For all analyses, sites within each year were pooled together due 926	  

to sample size requirements of the software. 927	  

 928	  

Nest Abundance and Effective Population Size 929	  

Bumble bees are eusocial species, with colonies originating from one reproductive 930	  

queen, usually via monoandrous mating, leading to 75% relatedness among offspring. As 931	  

such, colony abundance rather than that of individual foraging workers is most representative 932	  

of the size of the breeding population. Because colonies are nearly impossible to physically 933	  

locate in the field, population size is commonly estimated by assigning genetic sibships to 934	  

sampled workers (see Knight et al. 2009, Dreier et al. 2014, Geib et al. 2015).  To begin 935	  

analysis, sisters within each survey year were identified in COLONY (Version 2.0, software 936	  

available online). The program estimates the number of nests in the sample and predicts the 937	  

number of unsampled nests to find effective population size (Ne). It uses a maximum 938	  

likelihood algorithm (Wang 2004) which assumes single queen matings, typical for Bombus 939	  

balteatus. Only samples with a minimum of two available loci were included, with a 940	  

maximum of six. Colony testing parameters were set for a full-likelihood algorithm for 941	  

haplodiploid species. The mating system was described as having no likelihood of inbreeding 942	  

or cloning, with monoandrous queens and polyandrous males. Allele frequencies were 943	  
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updated with no prior sibship construction, and each year’s dataset was analyzed three times 944	  

with a different random seed number to ensure convergence of results.  945	  

 946	  

Preliminary Analysis 947	  

In order to ensure markers met assumptions for further testing, probability tests for 948	  

departure from Hardy-Weinberg equilibrium (HWE) and linkage disequilibrium were 949	  

conducted in GENALEX software for samples from each survey year (Version 6.5, Peakall 950	  

and Smouse 2006). Assumptions of single-sample methods require that no genetic 951	  

substructure exist within a population (Busch et al. 2007) which can be measured by F 952	  

statistics. For both years, and FST was calculated in GENALEX to measure the level of 953	  

genetic substructure between sites (FST). I used GENALEX to calculate observed 954	  

heterozygosity (HO) and mean number of alleles (A) for each year to compare general 955	  

measures of genetic diversity before and after the 2012 drought.   956	  

 957	  

Genetic Diversity and Bottleneck Signatures in the B. balteatus Population 958	  

I used a number of different tests to assess evidence for a genetic bottleneck signature 959	  

in the genotyped samples of B. balteatus from Pennsylvania Mountain.  960	  

 961	  

M- Ratio—The M ratio test (Garza and Williamson 2001) detects a bottleneck via the 962	  

relationship M=(k/r) where k is the number of alleles and r is the range in allele size. If a 963	  

population experiences a sharp decrease in size, increasing genetic drift would cause k to 964	  

decrease quickly, but r would only decrease if the smallest or largest allele were lost and at a 965	  

slower rate than k. Under bottleneck conditions, the M-ratio would be expected to be smaller 966	  
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in reduced populations than in equilibrium populations. The significance of an observed M 967	  

value is determined by comparing it to a range of M values that are calculated from 968	  

theoretical populations in mutation-drift equilibrium. The critical value is the lower 5% of the 969	  

distribution.  970	  

The program M_P_VAL (Garza and Williamson 2001) calculates M ratios from 971	  

genotype information including allele size and number. The ratios generated here are 972	  

compared to critical M (MC) values which are generated in the program CRITICAL_M 973	  

(Garza and Williamson 2001). This program requires three input parameters for that estimate 974	  

the mutation model for the sample population: θ (θ=4Neμ), pg (percent of mutations that are 975	  

larger than single steps), and Δg (the mean size of the mutations larger than single steps). 976	  

Values for θ were calculated from known Ne values estimated in COLONY 2.0 and μ = 5.0 977	  

X 10 -4/locus/generation, a common estimate of microsatellite mutation rate suggested by 978	  

Garza and Williamson (2001). Generic values determined by Garza and Williamson (2001) 979	  

were used for the other two parameters under the two-phase model (TPM) so that pg= 0.1 and 980	  

Δg= 2.8 steps. The simulation consisted of 10,000 iterations. 981	  

 982	  

Mode Shift and Heterozygosity Excess—Two tests were conducted in BOTTLENECK 983	  

software (Version 1.2.02, Piry et al. 1999) to look for evidence of recent population 984	  

reductions: the mode-shift test and the heterozygosity excess test (Cornuet and Luikart 1996, 985	  

Luikart and Cornuet 1998).  986	  

The mode-shift test is a test for allele frequency distribution. This method determines 987	  

if the frequency of alleles represented in the population align to a normal L-shaped 988	  
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distribution that would be expected when alleles are in mutation-drift equilibrium. Under this 989	  

equilibrium, the test finds many rare alleles (i.e. <0.1%) that are usually lost during a genetic 990	  

bottleneck. When there is a bottleneck, the L-shape distribution will experience a mode-shift 991	  

where the allele proportions of rare vs. common alleles is lost. Although the mutation model 992	  

of a marker has a strong effect on the estimation of heterozygosity excess, it does not distort 993	  

the allele frequencies distribution measured in the mode-shift test because rare alleles are 994	  

expected to be abundant regardless of the mutation model (Nei et al. 1976). 995	  

The second test conducted, the sign test, used allele frequency data to look for heterozygosity 996	  

excess (Nei et al. 1975).  If a bottleneck occurred, the mutation-drift equilibrium that would 997	  

normally equal the measured HWE heterozygosity (He) would be disrupted and the 998	  

heterozygosity at a locus would exceed the heterozygosity computed from the number of 999	  

alleles sampled. In short, the test would reveal a deviation from 50:50 heterozygosity 1000	  

deficiency/excess. There are three mutation models available when computing the sign test: 1001	  

the infinite allele model (IAM), stepwise mutation model (SMM), and the two-phase model 1002	  

(TPM), which is a combination of IAM and SMM with configurable percentages and 1003	  

variance of each model. Prior research suggests that the mutation model of most 1004	  

microsatellites follows the intermediate TPM model (Di Rienzo et al. 1994), while others 1005	  

have argued that microsatellites more closely follow the SMM (Luikart and Cornuet 1998). 1006	  

Still, other published methods that use markers within Bombus have used the IAM and argue 1007	  

that microsatellites in bumble bees do not follow the SMM (Estoup et al. 1995, Shao et al. 1008	  

2004).  Since the question of most appropriate mutation model for bumble bees is unresolved 1009	  

in the literature, I conducted the test under all three models, with TPM parameters set at 1010	  

variance = 10, pg = 0.1, or 10% (Ellis et al. 2006). The standardized differences test is not 1011	  
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reported because it requires a minimum of 20 polymorphic loci and only 6 loci reliably 1012	  

amplified for use. 1013	  

 1014	  

Results 1015	  

 1016	  

Nest Abundance  1017	  

Sample years 2008 and 2013 yielded 112 and 70 complete genotypes, respectively. In 1018	  

the 2008 sample set of 112 individuals, all sisters were removed leaving 98 representatives of 1019	  

singular nests for further analysis. In 2013, only three sisters were found out of 70, resulting 1020	  

in 67 nest representatives. Calculations from COLONY 2.0 software estimated 350 nests in 1021	  

2008 (95% CI [195, 364]) and 265 nests in 2013 (95% CI [140,305])(see Fig. 2). 1022	  

 1023	  

Preliminary Analysis 1024	  

No significant linkage disequilibrium (P > 0.05) was found within genotypes of either 1025	  

year. No significant departure from Hardy-Weinberg Equilibrium (HWE) was detected in the 1026	  

2008 population in either global test by population or by locus. In the 2013 samples, only the 1027	  

BL11 marker deviated significantly (P=<0.001), but because it was in equilibrium in the 1028	  

2008 year it could still be used for the heterozygosity excess tests (Busch et al. 2007) (Table 1029	  

1).  1030	  

The F-statistics tests reveal low fixation indexes across alleles for both years, 1031	  

suggesting there is enough gene flow in the area to prevent the formation of a strong 1032	  

substructure. The mean FST value in 2013 was 0.043, which indicates very little genetic 1033	  

differentiation among the population. By comparison, 2008 had a mean FST value of 0.033, 1034	  
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slightly less differentiation than in 2013 (Table 2). General measures of HO and number of 1035	  

different alleles are described in Table 3. The markers in 2013 revealed an average of 13 1036	  

alleles per locus compared to 10.3 in 2008.  1037	  

 1038	  

Genetic Diversity and Bottleneck Signatures in the B. balteatus Population 1039	  

M-Ratio—In the 2013 post-drought year, no loci experienced a drop in the M-ratio 1040	  

and values ranged between 0.705 and 1.20 (Table 4). The specific critical M value calculated 1041	  

by the software (MC = 0.695) was higher than the upper-limit suggested by Garza and 1042	  

Williamson, so calculated M-values were only compared with the generic value (MC = 0.68). 1043	  

All loci exceed the critical value and no bottleneck was detected. 1044	  

In comparison, the 2008 pre-drought year had high M-values that ranged between 1045	  

0.684 and 1.125. All loci exceeded both the generic critical M value determined by Garza and 1046	  

Williamson (MC=0.68 and the specific critical M-value determined by the software (MC= 1047	  

0.712) and no bottleneck was detected. 1048	  

 1049	  

Mode Shift and Heterozygosity Excess—The BOTTLENECK software did not detect 1050	  

a mode shift for neither 2013 nor 2008 populations.  Both of the allele frequencies for these 1051	  

populations were in a normal L-shaped distribution, despite the expectation that many rare 1052	  

alleles would be lost after the 2012 drought. The heterozygosity excess test which outputs a 1053	  

deficiency:excess ratio value detected no evidence of a bottleneck in either of the years 1054	  

(Table 5). In 2013, samples exhibited no heterozygosity excess under any of the models. The 1055	  

sign test revealed a 2:3 ratio under the IAM (P = 0.650), 3:2 under the TPM (P = 0.317), and 1056	  

a 5:0 ratio under the SMM (P = 0.0127). If a genetic bottleneck existed in 2013, we would 1057	  
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expect to see significant heterozygosity excess, but surprisingly we see a large heterozygosity 1058	  

deficiency under the SMM model. In comparison, the 2008 the sign test revealed a 1:5 ratio 1059	  

under the IAM (P = 0.24) and TPM (P = 0.23), and a 3:3 ratio under SMM (P = 0.48) and no 1060	  

bottleneck was detected.  1061	  

 1062	  

Discussion 1063	  

 1064	  

The available information and data for the pre-drought B. balteatus community 1065	  

served as a useful baseline for post-drought community comparisons.  Often times, research 1066	  

into population bottlenecks is conducted only after a suspected bottleneck has already 1067	  

occurred, usually without pre-bottleneck demographic or genetic data to make comparisons 1068	  

(Whitehouse and Harley 2001, Sinclair et al. 2002). Because data is available for the 1069	  

Pennsylvania Mountain Bombus community, we had the unique opportunity to compare a 1070	  

“normal” demographic year against a year where there was a known population contraction. I 1071	  

utilized three tests to search for evidence of a corresponding genetic bottleneck immediately 1072	  

after a known population contraction and with specific parameters for the microsatellites 1073	  

used. I hypothesized that I would be able to find genetic evidence that the 2013 B. balteatus 1074	  

population had recently suffered severe declines, but tests failed to detect any bottleneck 1075	  

event.  Tests showed that the 2008 comparison year did not experience a recent bottleneck 1076	  

event.   1077	  

 1078	  

 1079	  

 1080	  
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Nest Abundance and Effective Population Size 1081	  

Assessing nest abundance is of particular importance when estimating the health of 1082	  

the Bombus balteatus community, as it directly reflects the assumed number of breeding 1083	  

individuals. While estimates for forager abundance may be beneficial when looking at 1084	  

benefits to host plants, nest abundance represents the number of individuals that are able to 1085	  

reproduce and replenish new colonies in the community. These estimates are useful when 1086	  

addressing conservation concerns and population management, such as monitoring managed 1087	  

and wild bumble bee populations. 1088	  

Although many studies highlight the disproportionate decline of long-tongued bees 1089	  

compared to short-tongue bees (Colla and Packer 2008, Goulson et al. 2015), the Bombus 1090	  

balteatus population at Pennsylvania Mountain seems have a mechanism to recover quickly 1091	  

from such a catastrophic population contraction and may contradict predictions for 1092	  

worldwide decline. Nest estimates suggest that although 2013 abundance was slightly less 1093	  

than 2008, number of nests was still comparable and surprisingly high considering estimates 1094	  

in the year prior were effectively zero.  Despite the optimistic recovery of nests following the 1095	  

2013 drought year, further sampling should be conducted on Pennsylvania Mountain to 1096	  

monitor if this influx of colonies can be self-sustaining. If populations are unable to maintain 1097	  

high levels of Ne in the future, the population may become susceptible to inbreeding local 1098	  

extinction (Ellis et al. 2006, Whitehorn et al. 2009). 1099	  

 1100	  

Genetic Diversity and Bottleneck Signatures in the B. balteatus Population 1101	  

M-Ratio—There may be several reasons as to why the M-ratio test did not detect a 1102	  

bottleneck. The M-ratio analyzes values of number of alleles per locus and the range in allele 1103	  
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size. A neutral allele being lost due to genetic drift is related to its frequency, and rare alleles 1104	  

are lost more than common alleles. The assumption behind this test is that allele frequency 1105	  

distributions are rarely bell-shaped, and it is unlikely for the rarest alleles to always be the 1106	  

largest or smallest in a range of allele sizes. Therefore number of alleles will decrease more 1107	  

rapidly than the range of allele sizes (Garza and Williamson 2001). Because of this 1108	  

assumption, rapid immigration and replacement or addition of new alleles will maintain high 1109	  

ratio values (Williamson-Natesan 2005). Rapid immigration of individuals onto Pennsylvania 1110	  

Mountain and the prompt replacement of alleles would have disguised any evidence of a 1111	  

bottleneck. This test also has limited power directly after a bottleneck and is best conducted 1112	  

more than one generation after the bottleneck event (Peery et al. 2012).  1113	  

 1114	  

Mode Shift and Heterozygosity Excess—Although a mode shift is a commonly used 1115	  

method for detecting a bottleneck signature (Cornuet and Luikart 1996, Piry et al. 1999), 1116	  

prior research has found this test to have very low type I error and very high type II error 1117	  

(Williamson-Natesan 2005). It is less likely to detect a bottleneck when mutation rates are 1118	  

high (alpha = 20) and when mutations are large (Pg =0.2), and adding more loci does not 1119	  

correct for this, leaving this test a very conservative estimate of a bottleneck. Busch et al 1120	  

(2007) used the mode shift test on populations of kangaroo rats after a known bottleneck 1121	  

occurrence, and the test failed to detect a mode shift in pre- and post- bottleneck years. They 1122	  

determined that while five alleles were lost, four were gained, possibly due to migration, and 1123	  

that this infusion of alleles may have caused the test to maintain a normal L-shaped 1124	  

distribution despite the bottleneck. This may be the reason that no bottleneck signature was 1125	  
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detected in 2013, as there were on average 13 alleles per locus in 2013, and compared to an 1126	  

average of 10.3 per locus in 2008. 1127	  

The heterozygosity-excess test did not detect a bottleneck in 2013. However, it 1128	  

presents a clear explanation as to why 2013 has not retained a bottleneck signature. If there 1129	  

was a bottleneck, the test would reveal heterozygosity excess based on observed and 1130	  

expected measurements of heterozygosity. However, under the SMM model, the test 1131	  

indicates a significant heterozygosity deficiency, which is predicted to occur under rapid 1132	  

population expansions (Cornuet and Luikart 1996). If a rapid input of alleles from population 1133	  

replacement did occur in 2013, it would explain why the M ratio test maintained high ratio 1134	  

values and why a mode shift did not occur in allele distribution. Of course, this significance 1135	  

is only seen following one of the mutation models, and IAM and TPM maintained non-1136	  

significant ratio values that suggest there is neither an excess nor deficiency. In comparison, 1137	  

the Bombus balteatus population from 2008 had M ratio values above critical M values, no 1138	  

mode shift in allele frequency, and no heterozygosity excess or deficiency.  1139	  

When a known demographic bottleneck occurs, there may or may not be a resulting 1140	  

genetic bottleneck signature (Holland 2001, Schmid-Hempel et al. 2007). However, problems 1141	  

arise when there is a genetic bottleneck that is simply unable to be detecting using traditional 1142	  

testing methods. If a false negative occurs, populations could be incorrectly considered to be 1143	  

in good health or in HWE. This may present confusion in conservation efforts or in 1144	  

determining how population contractions will affect species in the future. A similar study 1145	  

documents a scenario in which a demographic bottleneck in two banner-tailed kangaroo rat 1146	  

populations was unaccompanied by a genetic bottleneck signature (Busch et al. 2007).  The 1147	  

study utilized extensive background demographic information, eight microsatellite markers, 1148	  
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and used the three testing methods described above. One population fell to 20% of stable 1149	  

population size, and the other was much more severe: a 10-year, 6-generation decline that 1150	  

spanned two orders of magnitude. Despite having species-specific parameters for tests 1151	  

(mutation rate, Ne and pg) none of the tests were able to detect a corresponding genetic 1152	  

bottleneck. The authors expect that a combination of high mutation rates, undetected 1153	  

immigration, and a demography marked by stochastic fluctuations interacted together to 1154	  

confound bottleneck analysis.  Similarly in this study, there may be several unforeseen 1155	  

attributes of bumble bees and their population dynamics, as well as statistical constraints of 1156	  

the testing methods, that may disguise a bottleneck signature. These alpine species may have 1157	  

some mechanism to recover from the population bottleneck and may be able to tolerate short-1158	  

term, random, extreme weather events. The mountaintops that were thought to act as isolated 1159	  

“islands” may not, in fact, be so. Dispersal ability across inter-peak valleys and large swaths 1160	  

of pine forest may allow for increased gene flow between subpopulations. These scenarios 1161	  

would help to explain why a bottleneck was undetectable, as bottleneck signatures are rarely 1162	  

retained in mainland populations (Cutrera et al. 2006, Putman and Carbone 2014).   1163	  

Furthermore, the testing methods used are dependent on a variety of conditions to 1164	  

have high statistical power. Power of the tests used in BOTTLENECK depends on the time 1165	  

elapsed since the bottleneck, and are most powerful at 2-4 Ne generations post-population 1166	  

bottleneck (Nei and Li 1976, Luikart and Cornuet 1998). This can leave a period where a 1167	  

false negative, or type II error, is more likely to occur. Power of all testing methods is also 1168	  

affected by the severity of the bottleneck, number of sampled individuals, and number of loci 1169	  

used in analysis. Although minimum requirements were met for number of sampled 1170	  

individuals in BOTTLENECK, many had poor genotyping success and the number of 1171	  
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useable loci was low (maximum of six used in all analyses) (Luikart et al. 1998b, Cristescu et 1172	  

al. 2010). Interestingly, reviews of the heterozygosity excess test used in BOTTLENECK 1173	  

reveal that increasing the amount of loci used exacerbates the type I error that may occur 1174	  

(Williamson-Natesan 2005, Peery et al. 2013). The M-ratio test loses statistical power when 1175	  

pre-bottleneck θ is small, the bottleneck is short in duration, or when the population is 1176	  

sampled directly after a bottleneck (Williamson-Natesan 2005). Considering the similarities 1177	  

between the constraints of the M-ratio test and our post-bottleneck sampling conditions, this 1178	  

may further explain why the test failed to detect a bottleneck.   1179	  

Not only are the testing methods reliant on situational parameters, they are dependent 1180	  

on the assumptions of microsatellite evolution to generate expected allele distributions for 1181	  

statistical accuracy (Luikart and Cornuet 1998, Garza and Williamson 2001). Three mutation 1182	  

models (IAM, TPM, and SMM) were used in this analysis, although which one is most 1183	  

reliable is relatively unknown. While microsatellites are generally believed to mutate 1184	  

following a TPM with the addition or loss of a single repeat, they may tend toward one 1185	  

extreme more than the other, and there are a small proportion of mutations that result in 1186	  

addition or loss of a larger number of repeats (Di Rienzo et al. 1994). To increase power of 1187	  

these tests, it is important that the estimate of number of multi-step repeats (pg) as well as the 1188	  

mean size of the multi-repeat (δg) is relatively accurate (Williamson-Natesan 2005). Errors in 1189	  

the assumption of these parameters can lead to a variety of false inferences from bottleneck 1190	  

tests (see: Luikart and Cornuet 1998, Piry et al. 1999, Garza and Williamson 2001, 1191	  

Williamson-Natesan 2005). 1192	  

In order to account for constraints of testing strength, further research should be done 1193	  

to measure how population contractions may impact populations or reveal a genetic 1194	  



	  61 

bottleneck more than one generation (or season) afterwards. Surveys in 2014-2016 may 1195	  

possess stronger ability to detect a bottleneck. To increase sensitivity of testing ability, it may 1196	  

also be useful to develop microsatellite markers for Bombus that are imperfect repeat loci. 1197	  

Their ability to create a more powerful analysis has been noted in Cornuet and Luikart (1996) 1198	  

and suggested in several reviews of these testing methods (Cristescu et al. 2010, Peery et al. 1199	  

2013). Monitoring efforts should continue at this site to look for long-term impacts of climate 1200	  

change and assess how alpine pollinators may persist through extreme weather events and 1201	  

maintain genetic variability after local populations collapse. 1202	  
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Table 1: Test for departure from Hardy-Weinberg Equilibrium  1203	  

Key: ns=not significant, * P<0.05, ** P<0.01, *** P<0.001 1204	  

Year Population Locus DF ChiSq Prob Signif 
2008 B124 36 33.808 0.573 ns 
2008 BL13 78 94.524 0.098 ns 
2008 BT10 36 49.836 0.062 ns 
2008 B10 45 44.657 0.486 ns 
2008 B96 91 77.255 0.847 ns 
2008 BL11 21 24.843 0.254 ns 
2013 BL13 66 61.833 0.623 ns 
2013 BT10 66 64.166 0.541 ns 
2013 B10 91 60.570 0.994 ns 
2013 B96 105 91.970 0.814 ns 
2013 BL11 66 192.243 0.000 *** 

  1205	  
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Table 2: Analysis of Molecular Variance for 2013 FST   1206	  
Summary AMOVA Table 

    
      Source df SS MS Est. Var. % 

Among Populations 3 16.024 5.341 0.095 5% 
Among Individuals 63 154.469 2.452 0.461 22% 
Within Individuals 67 102.500 1.530 1.530 73% 
Total 133 272.993 

 
2.086 100% 

 1207	  
 1208	  

 1209	  

 1210	  

 1211	  

  1212	  

F-Statistics Value 
P (rand >= 
data) 

Fst 0.046 0.005 

Fis 0.232 0.001 

Fit 0.267 0.001 
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Table 3: General measurements of observed heterozygosity (HO) and number of different 1213	  

alleles per locus (A).  1214	  

 

2013 
 

2008 
 

Locus HO A HO A 

B124 NA NA 0.765 9 

BL13 0.718 12 0.816 13 

BT10 0.949 12 0.796 9 

B10 0.746 14 0.714 10 

B96 0.889 15 0.857 14 

BL11 0.688 12 0.745 7 
  1215	  
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Table 4: M-Ratio Values and M Critical (Mc) values at each locus 1216	  

Population Ne k r Theta Locus M-ratio Mc 

2008 693.75 9 8 2.775 B124 1.125 .712 

  
13 19 

 
Bl13 0.684 

 

  
9 10 

 
BT10 0.9 

 

  
10 12 

 
B10 0.833 

 

  
14 16 

 
B96 0.875 

 

  
7 7 

 
BL11 1 

 

        
2013 727.57 k r Theta Locus 

M-
Ratio Mc 

  
12 17 2.91 Bl13 0.705 .695 

  
12 13 

 
BT10 0.923 

 

  
13 13 

 
B10 1 

 

  
15 13 

 
B96 1.153 

 

  
12 10 

 
BL11 1.2 

 1217	  



	  66 

Table 5: Heterozygosity excess test from BOTTLENECK 2.0 and P values for ratio 1218	  

significance from 50:50 1219	  

Year Mutation 
Model 

Ratio (Deficiency: 
Excess) 

Probability 

2013 IAM 2:3 0.65 

TPM 3:2 0.32 

SMM 5:0 0.01 

2008 IAM 1:5 0.24 

TPM 1:5 0.23 

SMM 3:3 0.48 

  1220	  
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Figure Legends 1221	  

Figure 1. Aerial image of Pennsylvania Mountain, Mosquito Range, Park County, Colorado. 1222	  

Pennsylvania Mountain Natural Area is located on the southern half of the mountain.  1223	  

Figure 2: Bombus balteatus “effective population size”(Ne).  Error bars represent the 95% 1224	  

confidence interval. 1225	  

Figure 3: Capture rate of foraging worker bumble bees, as a proxy for absolute abundance, 1226	  

during semi-annual surveys at Pennsylvania Mountain, Park County, CO. Columns represent 1227	  

means of sites sampled each year (n = 4, 2, and 4 for 2008, 2011, and 2012, respectively). 1228	  

Error bars are standard error. (Geib and Galen, unpublished data). 	  1229	  
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Figure 1. 1230	  

  	  1231	  
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Figure 2. 1232	  
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Figure 3.  1234	  
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Chapter 4 1236	  

GENERAL CONCLUSIONS 1237	  

As pollinator abundance and diversity continue to decline worldwide (Grixti et al. 1238	  

2009, Goulson et al. 2015), it is imperative that research is conducted to understand how 1239	  

pollinator communities will respond to shrinking numbers and increasing threats from 1240	  

climate change, pesticide use, and habitat degradation (Goulson et al. 2005). In the preceding 1241	  

chapters, I contribute to this body of understanding by taking advantage of an opportunity to 1242	  

examine recovery of alpine bumble bees after a severe population contraction on 1243	  

Pennsylvania Mountain. The Bombus community at this site was thought to experience 1244	  

geographical isolation from other mountaintop communities due to large inter-peak valleys, 1245	  

high winds, and large conifer stands fragmenting populations, however this research reveals 1246	  

that there may be much higher levels of immigration and dispersal than expected. In a world 1247	  

that is increasingly fragmented by changes in land use, understanding how pollinators can 1248	  

persist is very useful in developing conservation and management policies.   1249	  

Despite the observed collapse of the Bombus pollinator community on Pennsylvania 1250	  

Mountain, it is clear that these bumble bees have some mechanism to recover from short-1251	  

term population contractions. In Chapter 2, I used a range of measurements to compare the 1252	  

post-drought Bombus community to pre-drought measurements and found no evidence to 1253	  

suggest that the population experienced any 1254	  
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lasting effects from the 2012 drought. This year had very high rates of capture, and while 1255	  

number of foragers is not particularly indicative of the overall population (sterile workers 1256	  

will not produce any offspring) it is a very important measurement when assessing impacts to 1257	  

host plants.   1258	  

The 2012 drought provided a unique opportunity to study how the collapse of a 1259	  

pollinator community would affect plant fecundity in the following year. In alpine 1260	  

ecosystems, many plants are exceptionally long-lived perennials (Billings and Mooney 1261	  

1968). The trade offs for such lengthy lifespans are low recruitment and low offspring 1262	  

survival rates, a strategy that protects the plant population from occasions where sexual 1263	  

reproduction is resourced limited (Silvertown et al. 1993). The apparent absence of 1264	  

pollinators during the 2012 drought may not have had major impacts the overall plant 1265	  

population, but may have been a source of pollen limitation for new seed production and 1266	  

recruitment. In years of such extreme drought, plant reproduction may be more restricted by 1267	  

water resources, and plants may have low fecundity regardless of pollen availability (Herrera 1268	  

1991).  1269	  

In Appendix A, I specifically investigate possible carry over effects for two species of 1270	  

linked clovers, Trifolium dasyphyllum and T. parryi.  These are ecologically important plants 1271	  

because they are a few of the only nitrogen fixing plants that exist above tree line, Low 1272	  

nitrogen availability is characteristic of alpine and high-elevation ecosystems, as cold soil 1273	  

and air temperatures restrict transformation rates of organic matter (Makarov et al. 2011). 1274	  

Trifolium dasyphyllum is a generalist with most Bombus species throughout the season, while 1275	  

T. parryi is considered a specialist with B. balteatus (studied specifically in Chapter 3) in the 1276	  

early flowering season (Geib and Galen 2012). The results indicate that host plants received 1277	  
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adequate pollination services in the 2013 post-drought year, which is not particularly 1278	  

surprising considering the rapid repopulation of Pennsylvania Mountain that same year. If the 1279	  

Bombus population contraction was followed by very slow recovery or caused certain species 1280	  

(especially the long-tongued B. balteatus) to become extirpated, we may have seen much 1281	  

lower plant fecundity and recruitment. While one season of failed seed production may only 1282	  

be a drop in the bucket for these alpine plants, predictions for increasingly frequent droughts 1283	  

may begin to impact the overall population in future decades. 1284	  

Although many alpine plants have developed a strategy to persist through stochastic 1285	  

events that may inhibit seed production for entire seasons, most plants have not developed 1286	  

the luxury of such long lifespans. There are large gaps in our knowledge regarding 1287	  

consequences to plants when pollinators are absent, and most recent research has focused 1288	  

primarily on the losses of honey bees (Apis mellifera) (Goulson et al. 2015).  There is, 1289	  

however, some emerging data specifically connecting the losses of pollinators to the decline 1290	  

of host plants. Beismeijer et al. (2006) found a	  casual	  link	  between	  local	  extinctions	  of	  1291	  

functionally	  linked	  plants	  and	  pollinator	  species	  in	  Great	  Britain	  and	  the	  Netherlands.	  	  1292	  

The agricultural industry has experienced increases in food production costs due to shortfalls 1293	  

in the availability of pollinators. For example, California almond production has become 1294	  

noticeably more expensive due to shortages of mobile honey bee colonies (Watanabe 1994).  1295	  

In Chapter 3 I focus on the keystone pollinator B. balteatus in part to its historical 1296	  

dominance of this area and because it is the only long-tongued pollinator found on 1297	  

Pennsylvania Mountain (Macior 1974) able to pollinate plants with deep corollas. I used 1298	  

molecular genetic techniques to estimate number of nests and search for evidence of a 1299	  

genetic bottleneck resulting from the population contraction in 2012. While forager 1300	  



	  74 

abundance is important for plants, estimating genetic diversity within a population is 1301	  

important for species continued fitness (Darvill et al. 2006, Whitehorn et al. 2009).  Despite 1302	  

the severity of the 2012 population decline, no evidence of a bottleneck was found, 1303	  

supporting the idea that alpine bees may have developed mechanism for long range dispersal 1304	  

and immigration (Lepais et al. 2010, Geib et al. 2015).  1305	  

Further research must continue to monitor pollinator abundance and measure how 1306	  

pollinators will adapt, persist, or perish through increased climatic or anthropomorphic 1307	  

pressures. Long-term studies should be conducted to look at possible lag-time affects 1308	  

following seasonal population declines. Linked plants requiring pollination services for 1309	  

reproduction should be investigated in order to form predictions for future populations and 1310	  

create management and conservation strategies to prevent further loss of diversity and 1311	  

richness.	  1312	  
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Appendix A: Benefits To Host Plants 1645	  

 1646	  

Pollination mutualisms are important ecosystem functions that provide plants with 1647	  

cross-pollination benefits while producing food rewards for pollinators in the form of nectar 1648	  

or pollen. Recent estimates in pollination services state that around 80% of wild plant species 1649	  

and 35% of agricultural plants depend on pollinators for fruit and seed set (Food and 1650	  

Agriculture Organization of the United Nations). In fact, the most common proximate cause 1651	  

of reproductive failure in studied wild plants has been pollination limitation, and direct result 1652	  

of lack of pollinators (Colling et al. 2004, Elliott 2008).   1653	  

In 2012, the intermountain western US experienced a severe drought that resulted in 1654	  

drastic contractions in populations of bumble bees surveyed at Pennsylvania Mountain 1655	  

Natural Area, Park County, CO. Bumble bees are keystone pollinators in alpine tundra 1656	  

ecosystems (Lundberg 1980, Geib and Galen 2012) and can pollinate twice as fast as many 1657	  

co-pollinators, such as solitary bees, flies, and hummingbirds (Pleasants 2009). It is unclear 1658	  

how quickly benefits provided to alpine plants from bumble bee pollination will recover 1659	  

following the drought-mediated reductions of native Bombus populations.  If reduced 1660	  

population sizes carry over to subsequent years, effects could cascade to Bombus-dependent 1661	  

alpine flora.  I tested this prediction by examining pollination services and resultant fitness 1662	  

one year following the drought for two related and ecologically important alpine clover 1663	  

species that differ in pollination niche breadth: Trifolium parryi, a Bombus species specialist 1664	  

and T. dasyphyllum, a broad generalist for pollination. Prior studies have documented that 1665	  
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fitness and recruitment of Bombus-specialized T. parryi plants vary with abundance of their 1666	  

primary pollinators at small and large spatial scales (Geib and Galen 2012, Geib et al. 2015), 1667	  

while benefits to T. dasyphyllum are independent of variation in abundance of any one 1668	  

species. Quantitative models of the relationships predict dramatic loss of pollination services 1669	  

to T. parryi at very low pollinator densities. However, the availability of non-Bombus co-1670	  

pollinators should mediate the outcomes for either clover (Geib and Galen 2012). 1671	  

 1672	  

Methods 1673	  

 1674	  

Study site and system 1675	  

Data for this study were collected at Pennsylvania Mountain Natural Area 1676	  

(“Pennsylvania Mountain”), Park County, CO, in June - July 2013.   1677	  

Trifolium dasyphyllum and T. parryi (Fabaceae, subfamily Faboideae) are closely 1678	  

related native clovers (Ellison et al. 2006), abundant in the central Rocky Mountains (USA) 1679	  

from tree line upward. On Pennsylvania Mountain (Park Co., CO), they flower prolifically 1680	  

from snowmelt in June to late August. T. dasyphyllum are cushion-like clover plants that 1681	  

produce an average of eight flower heads per plant, and favor dry, open meadows. In 1682	  

contrast, T. parryi does not maintain a cushion-like structure, produces only one to two 1683	  

flower heads, and is more commonly found in moister snow bed environments. They coexist 1684	  

where the boundaries of these two habitats meet. 1685	  

These clovers are of particular ecological importance because they are responsible for 1686	  

a wide range of annual nitrogen inputs from fixation (Bowman et al. 1996). Nitrogen is a 1687	  

limiting key nutrient in alpine tundra regions, as low average temperatures limit the amount 1688	  
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of biological activity that can occur through nitrogen fixing symbiotic bacteria (Billings and 1689	  

Peterson 1974). This increases the biological importance of Trifolium species, which have 1690	  

been measured to have a 100 fold nitrogenase activity compared with non-legumes 1691	  

(Holzmann and Haselwandter 1988).  1692	  

Both clover species are obligate outcrossers with gametophytic self-incompatibility 1693	  

(Dhar et al. 2006).  T. dasyphyllum and T. parryi depend mainly on Bombus for pollination 1694	  

(Macior 1974). T. dasyphyllum has a shorter flower tube and is extensively visited by B. 1695	  

balteatus (a long-tongued species) and B. sylvicola (short-tongued). In contrast, T. parryi 1696	  

(longer-tubed) is visited almost exclusively by B. balteatus queens, and has found to be 1697	  

visited more often by B. balteatus than T. dasyphyllum clovers when in mixed patches. 1698	  

Solitary bees and flies also visit both clovers late in the summer and contribute significantly 1699	  

to seed set (Geib and Galen 2012). 1700	  

 1701	  

Field Methods 1702	  

Three sites on the southern half of Pennsylvania Mountain were chosen for the study, 1703	  

two in the krumholtz region below tree line (at 39°15’2”N 106°6’51.3”W and 39°15’177”N 1704	  

106°6’866”W at approximately 3450 m), and a sprawling site on a high elevation slope 1705	  

above tree line (39°15’14.9”N 106°7’27.5”W at approximately 3740 m). Within each site, I 1706	  

established ten plots (2m by 2m) that contained at least five plants of each clover species. 1707	  

Due to the lack of mixed plots at the high elevation slope, additional single species plots 1708	  

were identified that contained at least 5 plants of the same species for a total of 20 plots (10 1709	  

T. dasyphyllum, 10 T. parryi).  Plants within each plot were randomly assigned to one of 1710	  

three treatment groups:  1711	  
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• Open pollinated plants (O; n = 3 plant per plot at each site) were left open to natural 1712	  

visitors to assess fecundity attributed to background rates of pollination. 1713	  

• Hand pollinated plants (HP; n = 1 plant per plot at each site) received hand 1714	  

pollination of a marked flower head daily until all florets had senesced to determine 1715	  

maximum potential fecundity for each patch. 1716	  

• B. balteatus queen exclusion plants (EX; n = 1 plant per plot at each site) were fitted 1717	  

with a cage that excluded the clovers’ shared pollinator, queens of Bombus balteatus, 1718	  

to assess the contribution of co-pollinators to fecundity. The B. balteatus queen 1719	  

exclusion cages were made of wire hardware cloth (64 X 64 mm mesh), too small for 1720	  

B. balteatus queens to pass through but passible to smaller bumble bees and a variety 1721	  

of solitary bees, wasps, and ants.  1722	  

 After the flowers had senesced, one pistil from each flower head was collected and 1723	  

stored in a fixative containing a 3:1 mix of ethanol and glacial acetic acid for later assay of 1724	  

pollination. The remaining flower head was wrapped in mesh in order to collect any seeds 1725	  

that would develop throughout the rest of the season. Plastic mesh cages were placed around 1726	  

all flowers to protect them from elk and other grazers. The flower heads were collected in 1727	  

October and returned to Appalachian State University to be analyzed for seed set. However, 1728	  

catastrophic losses from herbivory, grazing and anthropogenic causes significantly reduced 1729	  

sample sizes. 1730	  

 Pistils were cleared with 8 M NaOH for 24 hours, rinsed, and stained with 1731	  

decolorized aniline blue due.  Pollen tubes were not successfully visualized, but stigma 1732	  

pollen grains were quantified using a microscope (Olympus XI81) with epifluorescence 1733	  

capabilities. However, stigma pollen grains are not a reliable indication of insect pollination 1734	  
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service for clovers, due to the tendency of clovers to allow self-pollen to germinate at least 1735	  

partway down the style. 1736	  

Flowers were dissected, and seeds and fruits were counted from each sample. Plant 1737	  

fecundity was measured by dividing the number of seeds produced by the number of florets 1738	  

on the flower head. As subsequent seed production is seen as a pollination benefit to these 1739	  

plants, we could compare fecundity of plants between the different treatments, between sites, 1740	  

and between species. 1741	  

Statistical Analysis 1742	  

 Statistical analysis was conducted in JMP (Version 22; SAS Institute) using analysis 1743	  

of variance (ANOVA) to test for model effects of site location and treatment on pollination 1744	  

benefits to each species using plot as unit of analysis. Raw data from the experiment had 1745	  

non–normal distribution patterns and were square-root transformed. Plant treatment (hand 1746	  

pollinated, HP; open pollinated, O; or excluded from B. balteatus queens, EX), site (n = 3), 1747	  

and treatment by site interactions were the fixed effects of the model. Both plant fecundity 1748	  

(seeds/flower) and fruit set (fruits/flower) was tested under this model.  1749	  

 1750	  

Results 1751	  

 1752	  

The impact of site and treatment on plant fecundity and fruit production differed 1753	  

slightly between species. The site in which the plots were situated had a significant effect on 1754	  

both seed set and fruit set (T. parryi fruit/flower: F (2,67) = 3.50, P = 0.0359, seed/flower F 1755	  

(2,67) = 3.60, P = 0.0329, T. dasyphyllum fruit/flower: F (2, 65) = 9.77, P = 0.0002, 1756	  
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seed/flower F (2,65) = 9.97, P = 0.0002). In both species, there were neither significant 1757	  

effects from pollination treatment nor interaction effects from site x pollination treatment.  1758	  

T. dasyphyllum produced essentially no seeds above tree line (slope site) and sites 1759	  

below treeline (ridge and logging road), T. dasyphyllum set significantly more seed. There 1760	  

were no differences in seed set per flower between treatments. T. parryi experienced lowest 1761	  

seed set at the ridge, significantly different from seed set at the logging road site.  1762	  

 1763	  

Discussion 1764	  

 1765	  

Our main objective for this study was to test for evidence of pollination limitation in 1766	  

early-flowering mixed clover patches one year following drought-mediated declines in 1767	  

bumble bee population abundances. We found no evidence for pollination limitation; 1768	  

fecundity for open-pollinator clovers at all sites demonstrated that limitation of seed set due 1769	  

to access to pollinators was not an issue, even just one year following drought-mediated 1770	  

population reductions of all bumble bee species.    1771	  

For T. parryi at all sites (ridge, slope and logging road) seed set was the same for 1772	  

excluded, open, and hand pollinated plants. Trifolium parryi experienced lowest seed set at 1773	  

the ridge site, which is consistent with the tendency for this species to favor moister, more 1774	  

sheltered habitats such as on the logging road protected by large willow patches and the slope 1775	  

site that receives snow bed runoff well into summer.  1776	  

T. dasyphyllum had significantly lower seed set at the high elevation slope site. A 1777	  

possible explanation for decreased seed set may be that plants aborted seed production due to 1778	  

lack of resources or incompatible pollen.  1779	  
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Hand pollination was expected to serve as a control for maximum plant seed set when pollen 1780	  

deposition was not acting as a limitation. Some sites had lower seed set in hand pollinated 1781	  

plants than open pollinated plants, indicating that hand pollinators may not have been 1782	  

successful. Low success from hand pollination may have occurred for several reasons. 1783	  

Trifolium plants are unable to self-pollinate, and it may have been possible that donor pollen 1784	  

was selected from a vegetative reproduced clonal plant In this case, self-incompatible 1785	  

pollinations may clog stigmas, inhibit the ability for outcross pollen to create germination 1786	  

tubes, and ultimately reduce plant fecundity (Galen et al 1989). Donor pollen may have failed 1787	  

to properly attach to the stigma for germination, or the pollen may have been deposited at the 1788	  

wrong time. All hand pollinations were done using pollen from a donor plant outside of 5 x 1789	  

5m patch when flowers were fully open to limit these errors, but it is possible that these 1790	  

scenarios still contributed to low success of hand pollination at some sites. 1791	  

Previous research suggested that excluding B. balteatus from flowering heads would 1792	  

have no consistent impact on T. dasyphyllum pollination services, but should negatively 1793	  

impact T. parryi in early flowering patches by limiting pollen deposit and subsequent seed 1794	  

set (Geib and Galen 2012). Interestingly in 2013, excluding B. balteatus queens did not 1795	  

reduce seed set in T. parryi.  Either Bombus or non-Bombus copollinatiors contributed 1796	  

significantly to seed set in the absence of B. balteatus queens. In the 2013 season, B. 1797	  

flavifrons worker bees were most abundant, and estimates of nest numbers from individual 1798	  

counts predict that this species had the greatest relative abundance in the Bombus 1799	  

community. Prior research has found that although B. balteatus has the largest tongue size 1800	  

average, thus its position as a primary pollinator for T. parryi, B. flavifrons has a range of 1801	  

tongue size that overlaps with B. balteatus. Average tongue length for B. balteatus is 8.75mm 1802	  
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– 13 mm (mean = 10.0 mm) and B. flavifrons has a range of 6.5mm = 13mm (mean = 1803	  

8.25mm) (Macior 1996). This increasingly abundant low-alpine species may be contributing 1804	  

to pollination services in the long-corolla clover, and may be the reason that no decrease in 1805	  

fecundity was seen in the early 2013 flowering season.  1806	  

If B. flavifrons is not providing these services, then there are several other scenarios that 1807	  

may explain the high fecundity. Other co-pollinators outside of the Bombus community may 1808	  

also have established themselves as viable pollinators for T. parryi. Solitary bees and flies 1809	  

may be contributing pollination services, even though past studies of the same species found 1810	  

a co-pollinator effect only later in the season (Geib and Galen 2012). It is unknown how the 1811	  

drought may have impacted co-pollinator abundance and/or phenology in 2013.   1812	  
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Table	  1:	  ANOVA	  for	  Trifolium	  dasyphyllum	  and	  T.	  parryi	  testing	  site	  (ridge,	  slope,	  log	  1813	  

road)	  and	  treatment	  (hand	  pollinated,	  open	  pollinated,	  excluded	  from	  B.	  balteatus	  1814	  

queens)	  effects	  on	  fruits/flower	  and	  seeds/flower	  (plant	  fecundity). 1815	  

T.	  dasyphyllum	   Source	   DF	   SS	   F	  ratio	   P	  Value	  
A	  -‐	  Fruits/Flower	   Site	   2	   1.03	   9.77	   0.0002*	  
	   Treatment	   2	   0.01	   0.12	   0.8889	  
	   Site	  X	  Treatment	   4	   0.33	   1.54	   0.2016	  
	   Error	   65	   3.44	   	   	  
	   	   	   	   	   	  
B-‐	  Seeds/Flower	   Site	   2	   1.17	   9.97	   0.0002*	  
	   Treatment	   2	   0.02	   0.16	   0.8494	  
	   Site	  X	  Treatment	   4	   0.37	   1.56	   0.1953	  
	   Error	   65	   3.80	   	   	  
	   	   	   	   	   	  
T.	  parryi	   Source	   DF	   SS	   F	  ratio	   P	  Value	  
A	  -‐	  Fruits/Flower	   Site	   2	   0.33	   3.50	   0.0359*	  
	   Treatment	   2	   0.01	   0.12	   0.8896	  
	   Site	  X	  Treatment	   4	   0.19	   1.01	   0.4062	  
	   Error	   67	   3.14	   	   	  
	   	   	   	   	   	  
B-‐	  Seeds/Flower	   Site	   2	   0.38	   3.60	   0.0329*	  
	   Treatment	   2	   0.01	   0.08	   0.9253	  
	   Site	  X	  Treatment	   4	   0.22	   1.02	   0.4031	  
	   Error	   67	   3.56	   	   	  
 	  1816	  
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Figure Legends 1817	  

Figure 1: Number of T. dasyphyllum seeds produced per flower under three treatments: 1818	  

excluded from B. balteatus queens (EX), open pollinated (O), and hand pollinated (HP). Bars 1819	  

are site means with standard error. 1820	  

Figure 2: Number of T. parryi seeds produced per flower under three treatments: excluded 1821	  

from B. balteatus queens (EX), open pollinated (O), and hand pollinated (HP). Bars are site 1822	  

means with standard error.  1823	  
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Figure 1. 1824	  
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Figure 2. 1826	  
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